• Title/Summary/Keyword: Radial solutions

Search Result 193, Processing Time 0.023 seconds

Flow Analysis in a Rotating Container with Axial Injection and Radial Ejection (축방향 유입과 반경방향 유출이 있는 회전용기 내의 유동해석)

  • Park, Jun-Sang;Sohn, Jin-Gug
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • An investigation has been made of a viscous incompressible flow in a circular cylindrical tank. The flow is driven by the spinning bottom disk of tank together with/without central injection and radial uniform-ejection through the sidewall. Numerical solutions of steady and unsteady flows to 3-dimensional Navier-Stokes equation were obtained for several cases of injection strength. In a moderate flow rate of injection, the mass transfer occurs through the boundary layers but, as the flow rate increases, the inner region far from the container walls takes part in mass transfer.

SOLVING PARTIAL DIFFERENTIAL ALGEBRAIC EQUATIONS BY COLLOCATION AND RADIAL BASIS FUNCTIONS

  • Bao, Wendi;Song, Yongzhong
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.951-969
    • /
    • 2012
  • In this paper, we propose a class of meshless collocation approaches for the solution of time dependent partial differential algebraic equations (PDAEs) in terms of a radial basis function interpolation numerical scheme. Kansa's method and the Hermite collocation method (HCM) for PDAEs are given. A sensitivity analysis of the solutions from different shape parameter c is obtained by numerical experiments. With use of the random collocation points, we have obtain the more accurate solution by the methods than those by the finite difference method for the PDAEs with index-2, i.e, we avoid the influence from an index jump of PDAEs in some degree. Several numerical experiments show that the methods are efficient.

Comparison and Electromagnetic Analysis of BLDC Motors with Radial and Polar Plastic Magnets (반경 및 원주 방향 자화된 플라스틱 자석을 갖는 BLDC 전동기의 전자기적 특성해석 및 비교)

  • Jang, Seok-Myeong;Cho, Jang-Young;Cho, Han-Wook;Yang, Hyun-Sup;Lee, Sung-Ho;Jeong, Sang-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.25-27
    • /
    • 2005
  • This paper deals with the comparison and analysis of brushless DC (BLDC) motor with radial and polar anisotropic plastic magnet. The open-circuit field distributions and back-emf for BLDC motor with polar plastic magnet are established analytically and the results are validated extensively by comparison with finite element (FE) analyses. On the basis of two dimensional (2-D) analytical solutions, this paper predicts open-circuit field characteristics according to design parameters and makes a comparison between BLDC motor with polar plastic magnet and it with radial plastic magnet in terms of required magnet volume and harmonic of air-gap flux density waveform.

  • PDF

ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATIONS IN ℝn

  • Lai, Baishun;Luo, Qing;Zhou, Shuqing
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.431-447
    • /
    • 2011
  • We investigate the asymptotic behavior of positive solutions to the elliptic equation (0.1) ${\Delta}u+|x|^{l_1}u^p+|x|^{l_2}u^q=0$ in $\mathbb{R}^n$. We obtain a conclusion that, for n $\geq$ 3, -2 < $l_2$ < $l_1$ $\leq$ 0 and q > p > 1, any positive radial solution to (0.1) has the following properties: $lim_{r{\rightarrow}{\infty}}r^{\frac{2+l_1}{p-1}}\;u$ and $lim_{r{\rightarrow}0}r^{\frac{2+l_2}{q-1}}\;u$ always exist if $\frac{n+1_1}{n-2}$ < p < q, $p\;{\neq}\;\frac{n+2+2l_1}{n-2}$, $q\;{\neq}\;\frac{n+2+2l_2}{n-2}$. In addition, we prove that the singular positive solution of (0.1) is unique under some conditions.

A Comparative Study of Leakage Flow Models for Scroll Compressors with CFD Solutions (스크롤 압축기 누설 모델의 CFD 해와의 비교 연구)

  • 강동진;홍석준;전현주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.843-851
    • /
    • 2003
  • The present paper studies the leakage flow model used in the performance prediction of a scroll compressor. Two leakage flow models, isentropic and Fanno flow model, are studied in detail. Their predictions are also compared with CFD solutions to check the validity as a leakage flow model. Comparison with CFD solutions shows that the isentropic flow model predicts excessive leakage flow rate, while the Fanno flow model shows acceptable agreement with CFD solutions. The excessive leakage flow rate by isentropic flow model results in under-prediction of the overall performance of a scroll compressor.

Parametric Analysis and Experimental Testing of Radial Flux Type Synchronous Permanent Magnet Coupling Based on Analytical Torque Calculations

  • Kang, Han-Bit;Choi, Jang-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.926-931
    • /
    • 2014
  • This paper presents the torque calculation and parametric analysis of synchronous permanent magnet couplings (SPMCs). Based on a magnetic vector potential, we obtained the analytical magnetic field solutions produced by permanent magnets (PMs). Then, the analytical solutions for a magnetic torque were obtained. All analytical results were extensively validated with the non-linear a two-dimensional (2D) finite element analysis (FEA). In particular, test results such as torque measurements are presented that confirm the analysis. Finally, using the derived analytical magnetic torque solutions, we carried out a parametric analysis to determine the influence of the design parameters on the SPMC's behavior.

Deflection and Stress Distributions of a Circular Plate under the Constant Pressure with respect to the Element types (균등 압력이 부과된 원형판의 변형에 대한 해석요소의 정확성 비교)

  • Lee, Hyoungwook
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • The analysis of circular plates under the constant pressure are simplified as the loading conditions of the circular manhole. The theoretical solution of circular plates with respect to the constant pressures are derived by using the governing equation of plate deflection. The deflection and the radial stress distributions were calculated by the theory. Finite element solutions were conducted with respect to the element types of the continuum elements. The most accurate element was selected by comparisons of the theoretical solutions and simulated solutions. The C3D8I element type in brick-type continuum elements gave in a good accordance with the theoretical solutions.

Elastic solution of a curved beam made of functionally graded materials with different cross sections

  • Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.659-672
    • /
    • 2015
  • This research deals with the analytical solution of a curved beam with different shapes made of functionally graded materials (FGM's). It was assumed that modulus of elasticity is graded along the thickness direction of curved beam based on a power function. The beam was loaded under pure bending. Using the linear theory of elasticity, the general relation for radial distribution of radial and circumferential stresses of arbitrary cross section was derived. The effect of nonhomogeneity was considered on the radial distribution of circumferential stress. This behavior can be investigated for positive and negative values of nonhomogeneity index. The novelty of this study is application of the obtained results for different combination of material properties and cross sections. Achieved results indicate that employing different nonhomogeneity index and selection of various types of cross sections (rectangular, triangular or circular) can control the distribution of radial and circumferential stresses as designer want and propose new solutions by these options. Increasing the nonhomogeneity index for positive or negative values of nonhomogeneity index and for various cross sections presents different behaviors along the thickness direction. In order to validate the present research, the results of this research can be compared with previous result for reachable cross sections and non homogeneity index.

A semi-analytical FE method for the 3D bending analysis of nonhomogeneous orthotropic toroidal shells

  • Wu, Chih-Ping;Li, En
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.291-306
    • /
    • 2021
  • Based on Reissner's mixed variational theorem (RMVT), the authors develop a semi-analytical finite element (FE) method for a three-dimensional (3D) bending analysis of nonhomogeneous orthotropic, complete and incomplete toroidal shells subjected to uniformly-distributed loads. In this formulation, the toroidal shell is divided into several finite annular prisms (FAPs) with quadrilateral cross-sections, where trigonometric functions and serendipity polynomials are used to interpolate the circumferential direction and meridian-radial surface variations in the primary field variables of each individual prism, respectively. The material properties of the toroidal shell are considered to be nonhomogeneous orthotropic over the meridianradial surface, such that homogeneous isotropic toroidal shells, laminated cross-ply toroidal shells, and single- and bi-directional functionally graded toroidal shells can be included as special cases in this work. Implementation of the current FAP methods shows that their solutions converge rapidly, and the convergent FAP solutions closely agree with the 3D elasticity solutions available in the literature.

Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.1-24
    • /
    • 2014
  • The present study deals with two dimensional electro-elastic analysis of a functionally graded piezoelectric (FGP) cylinder under internal pressure. Energy method and first order shear deformation theory (FSDT) are employed for this purpose. All mechanical and electrical properties except Poisson ratio are considered as a power function along the radial direction. The cylinder is subjected to uniform internal pressure. By supposing two dimensional displacement and electric potential fields along the radial and axial direction, the governing differential equations can be derived in terms of unknown electrical and mechanical functions. Homogeneous solution can be obtained by imposing the appropriate mechanical and electrical boundary conditions. This proposed solution has capability to solve the cylinder structure with arbitrary boundary conditions. The previous solutions have been proposed for the problem with simple boundary conditions (simply supported cylinder) by using the routine functions such as trigonometric functions. The axial distribution of the axial displacement, radial displacement and electric potential of the cylinder can be presented as the important results of this paper for various non homogeneous indexes. This paper evaluates the effect of a local support on the distribution of mechanical and electrical components. This investigation indicates that a support has important influence on the distribution of mechanical and electrical components rather than a cylinder with ignoring the effect of the supports. Obtained results using present method at regions that are adequate far from two ends of the cylinder can be compared with previous results (plane elasticity and one dimensional first order shear deformation theories).