DOI QR코드

DOI QR Code

SOLVING PARTIAL DIFFERENTIAL ALGEBRAIC EQUATIONS BY COLLOCATION AND RADIAL BASIS FUNCTIONS

  • Bao, Wendi (School of Mathematical Sciences, Nanjing Normal University, School of Mathematic and Computational science, China University of Petroleum) ;
  • Song, Yongzhong (School of Mathematical Sciences, Nanjing Normal University)
  • Received : 2011.10.23
  • Accepted : 2012.02.07
  • Published : 2012.09.30

Abstract

In this paper, we propose a class of meshless collocation approaches for the solution of time dependent partial differential algebraic equations (PDAEs) in terms of a radial basis function interpolation numerical scheme. Kansa's method and the Hermite collocation method (HCM) for PDAEs are given. A sensitivity analysis of the solutions from different shape parameter c is obtained by numerical experiments. With use of the random collocation points, we have obtain the more accurate solution by the methods than those by the finite difference method for the PDAEs with index-2, i.e, we avoid the influence from an index jump of PDAEs in some degree. Several numerical experiments show that the methods are efficient.

Keywords

References

  1. G. Ali, A. Bartel, M. Gunther,Parabolic differential-algebraic models in electric network design, SIAM J. MMS, 4(2005) 813-838. https://doi.org/10.1137/040610696
  2. X. Antoine, C. Besse, V. Mouysset, Numerical schemes for the simulation of the two dimensional Schrodinger equation using non-reflecting boundary conditions, Math. Comput. 48 (2004), 1779-1799
  3. A. Bartel, Partial Differential-Algebraic Models in Chip Design-Thermal and Semiconductor Problems. VDI-Verlag, Dusseldorf, 2004.
  4. J. Buttner, B. Simeon, Numerical Treatment of Material Equations with Yield Surfaces. in: Hutter, K.; Baaser, H. (eds.); Deformations and failure of metallic continua. Lecture Notes in Appl. Comp. Mech. 10, Springer-Verlag, Berlin, 2003.
  5. S. L. Campbell, W. Marszalek, The index of an infinite dimensional implicit system, Math. Comp. Model. Dyn. 1(5)(1999), 18-42.
  6. K. Chudej, P. Heidebrecht, V. Petzet, S. Scherdel and et al., Index analysis and numerical solution of a large scale nonlinear PDAE system describing the dynamical behaviour of Molten Carbonate Fuel Cells, Z. Angew. Math. Mech. 85(2005), 132-140. https://doi.org/10.1002/zamm.200310166
  7. M. Dehghan, A. Shokri, A numerical method for two-dimensional Schrodinger equation using collocation and radial basis functions, Comput. Math. Appl. 54(2007), 136-146. https://doi.org/10.1016/j.camwa.2007.01.038
  8. G.E. Fasshauer, Solving partial differential equations by collocation with radial basis functions, In: Le Mechaute A, Rabut C, Schumaker LL, editors. Surface fitting and multiresolution methods, Nashville TN: Vanderbilt University Press, 1997.
  9. Y.C. Hon, R. Schaback, On unsymmetric colloration by radial basis functions, J. Appl. Math. Comput. 119(2001), 177-186. https://doi.org/10.1016/S0096-3003(99)00255-6
  10. J. Li, AH-D. Cheng, C.S. Chen, A comparison of efficiency and error convergence of multiquadric collocation method and finite element method, Eng. Anal. Bound. Elem. 27(2003),251-257. https://doi.org/10.1016/S0955-7997(02)00081-4
  11. W. Lucht, K. Strehmel,Discretization based indices for semilinear partial differential algebraic equations, Appl. Numer. Math. 28(1998), 371-386. https://doi.org/10.1016/S0168-9274(98)00054-3
  12. W. Lucht, K. Strehmel, C. Eichler-Liebenow, Linear partial differential algebraic equations Part II: Numerical solution, Reports on Numerical Mathematics 18, Fachbereich Mathematik und Informatik, Martin-Luther-Universitat Halle-Wittenberg, 1997.
  13. Z. Luo, J. Levesley, Error estimates and convergence rates for variational Hermite interpolation, J. Approximation. Theory. 95(1998), 264-279. https://doi.org/10.1006/jath.1997.3218
  14. W. Marszalek, Analysis of Partial Differential Algebraic Equations, PhD Thesis, North Carolina State University, Raleigh, NC, USA, 1997.
  15. A.L. Rocca, A.H. Rosales, H. Power, Radial basis function Hermite collocation approach for the solution of time dependent convection-diffusion problems, Eng. Anal. Bound. Elem. 29(2005),359-370. https://doi.org/10.1016/j.enganabound.2004.06.005
  16. S.K. Vanani, A. Aminataei, Multiquadric approximation scheme on the numerical solution of delay differential systems of neutral type, Math. Comput. Modelling . 49(2009),234-241. https://doi.org/10.1016/j.mcm.2008.03.016
  17. G. Wright, B. Fornberg, Scattered node compact finite difference-type formulas generated from radial basis functions, J. Comput. Phys. 212(2006), 99-123. https://doi.org/10.1016/j.jcp.2005.05.030
  18. Z. Wu, Hermite-Birkhoff interpolation of scattered data by radial basis functions, Approximation Theory Appl. 8(1992), 1-10.
  19. M. Zerroukat, H. Power, C.S. Chen, A numerical method for heat transfer problems using collocation and radial basis functions, Int. J. Numer. Meth. Engng. 42(1998), 1263-1278. https://doi.org/10.1002/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I