• 제목/요약/키워드: Radial Positive Solutions

검색결과 19건 처리시간 0.019초

EXISTENCE OF THE THIRD POSITIVE RADIAL SOLUTION OF A SEMILINEAR ELLIPTIC PROBLEM ON AN UNBOUNDED DOMAIN

  • Ko, Bong-Soo;Lee, Yong-Hoon
    • 대한수학회지
    • /
    • 제39권3호
    • /
    • pp.439-460
    • /
    • 2002
  • We prove the multiplicity of ordered positive radial solutions for a semilinear elliptic problem defined on an exterior domain. The key argument is to prove the existence of the third solution in presence of two known solutions. For this, we obtain some partial results related to three solutions theorem for certain singular boundary value problems. Proof are mainly based on the upper and lower solutions method and degree theory.

PROPERTIES OF POSITIVE SOLUTIONS FOR THE FRACTIONAL LAPLACIAN SYSTEMS WITH POSITIVE-NEGATIVE MIXED POWERS

  • Zhongxue Lu;Mengjia Niu;Yuanyuan Shen;Anjie Yuan
    • 대한수학회지
    • /
    • 제61권3호
    • /
    • pp.445-459
    • /
    • 2024
  • In this paper, by establishing the direct method of moving planes for the fractional Laplacian system with positive-negative mixed powers, we obtain the radial symmetry and monotonicity of the positive solutions for the fractional Laplacian systems with positive-negative mixed powers in the whole space. We also give two special cases.

POSITIVE RADIAL SOLUTIONS OF $DELTA U + LAMBDA F(U) 0$ ON ANNULUS

  • Bae, Soo-Hyun;Park, Sang-Don;Pahk, Dae-Hyeon
    • 대한수학회지
    • /
    • 제33권2호
    • /
    • pp.381-386
    • /
    • 1996
  • We consider the behavior of positive radial solutions (or, briefly, pp.r.s.) of the equation $$ (1.1) ^\Delta u + \lambda f(u) = 0 in\Omega, _u = 0 on \partial\Omega, $$ where $\Omega = {x \in R^n$\mid$A < $\mid$x$\mid$ < B}$ is an annulus in $R^n, n \geq 2, \lambda > 0 and f \geq 0$ is superlinear in u and satisfies f(0) = 0.

  • PDF

RADIAL SYMMETRY OF POSITIVE SOLUTIONS FOR SEMILINEAR ELLIPTIC EQUATIONS IN $R^n$

  • Naito, Yuki
    • 대한수학회지
    • /
    • 제37권5호
    • /
    • pp.751-761
    • /
    • 2000
  • Symmetry properties of positive solutions for semilinear elliptic problems in n are considered. We give a symmetry result for the problem in the feneral case, and then derive various results for certain classes of demilinear elliptic equations. We employ the moving plane method based on the maximum principle on unbounded domains to obtain the result on symmetry.

  • PDF

THE GLOBAL EXISTENCE AND BEHAVIOR OF RADIAL SOLUTIONS OF A NONLINEAR p-LAPLACIAN TYPE EQUATION WITH SINGULAR COEFFICIENTS

  • Hikmat El Baghouri;Arij Bouzelmate
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.333-360
    • /
    • 2024
  • This paper is concerned with the radial solutions of a nonlinear elliptic equation ∆pu + |x|𝑙1 |u|q1-1 u + |x|𝑙2 |u|q2-1 u = 0, x ∈ ℝN, where p > 2, N ≥ 1, q2 > q1 ≥ 1, -p < 𝑙2 < 𝑙1 ≤ 0 and -N < 𝑙2 < 𝑙1 ≤ 0. We prove the existence of global solutions, we give their classification and we present the explicit behavior of positive solutions near the origin and infinity.

A Nonlinear Elliptic Equation of Emden Fowler Type with Convection Term

  • Mohamed El Hathout;Hikmat El Baghouri;Arij Bouzelmate
    • Kyungpook Mathematical Journal
    • /
    • 제64권1호
    • /
    • pp.113-131
    • /
    • 2024
  • In this paper we give conditions for the existence of, and describe the asymtotic behavior of, radial positive solutions of the nonlinear elliptic equation of Emden-Fowler type with convection term ∆p u + 𝛼|u|q-1u + 𝛽x.∇(|u|q-1u) = 0 for x ∈ ℝN, where p > 2, q > 1, N ≥ 1, 𝛼 > 0, 𝛽 > 0 and ∆p is the p-Laplacian operator. In particular, we determine ${\lim}_{r{\rightarrow}}{\infty}\,r^{\frac{p}{q+1-p}}\,u(r)$ when $\frac{{\alpha}}{{\beta}}$ > N > p and $q\,{\geq}\,{\frac{N(p-1)+p}{N-p}}$.

ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATIONS IN ℝn

  • Lai, Baishun;Luo, Qing;Zhou, Shuqing
    • 대한수학회지
    • /
    • 제48권2호
    • /
    • pp.431-447
    • /
    • 2011
  • We investigate the asymptotic behavior of positive solutions to the elliptic equation (0.1) ${\Delta}u+|x|^{l_1}u^p+|x|^{l_2}u^q=0$ in $\mathbb{R}^n$. We obtain a conclusion that, for n $\geq$ 3, -2 < $l_2$ < $l_1$ $\leq$ 0 and q > p > 1, any positive radial solution to (0.1) has the following properties: $lim_{r{\rightarrow}{\infty}}r^{\frac{2+l_1}{p-1}}\;u$ and $lim_{r{\rightarrow}0}r^{\frac{2+l_2}{q-1}}\;u$ always exist if $\frac{n+1_1}{n-2}$ < p < q, $p\;{\neq}\;\frac{n+2+2l_1}{n-2}$, $q\;{\neq}\;\frac{n+2+2l_2}{n-2}$. In addition, we prove that the singular positive solution of (0.1) is unique under some conditions.

SYMMETRY OF COMPONENTS FOR RADIAL SOLUTIONS OF γ-LAPLACIAN SYSTEMS

  • Wang, Yun
    • 대한수학회지
    • /
    • 제53권2호
    • /
    • pp.305-313
    • /
    • 2016
  • In this paper, we give several sufficient conditions ensuring that any positive radial solution (u, v) of the following ${\gamma}$-Laplacian systems in the whole space ${\mathbb{R}}^n$ has the components symmetry property $u{\equiv}v$ $$\{\array{-div({\mid}{\nabla}u{\mid}^{{\gamma}-2}{\nabla}u)=f(u,v)\text{ in }{\mathbb{R}}^n,\\-div({\mid}{\nabla}v{\mid}^{{\gamma}-2}{\nabla}v)=g(u,v)\text{ in }{\mathbb{R}}^n.}$$ Here n > ${\gamma}$, ${\gamma}$ > 1. Thus, the systems will be reduced to a single ${\gamma}$-Laplacian equation: $$-div({\mid}{\nabla}u{\mid}^{{\gamma}-2}{\nabla}u)=f(u)\text{ in }{\mathbb{R}}^n$$. Our proofs are based on suitable comparation principle arguments, combined with properties of radial solutions.