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POSITIVE RADIAL SOLUTIONS
OF Au+ Af(u) = 0 ON ANNULUS

Soo HyunN BAE, SANG DoN PARK AND DAE HYEON PAHK

1. Introdution

We consider the behavior of positive radial solutions (or, briefly,
p.r.s.) of the equation

; Au+ Af(u) =0 inf?,
(1-1) u =0 on OS2,

where @ = {z € R"|A < |z| < B}isanannulusin R", n >2, A >0
and f > 0 is superlinear in u and satisfies f(0) = 0. The existence
of solutions for this problem in a bounded domain has been proved
under various sets of assumptions, always including a restriction on the
growth of f at infinity[1},[3],[5]. Such a growth condition is, in general,
necessary for star-shaped domains [11]. Since the annulus is not a star-
shaped domain, there are no “natural” constraints for the growth of
f. When € is a ball, all positive solutions of (1.1} have to be radially
symmetric for any Lipschitz continuous f(u) [7]. On the annulus, there
are nonradial positive solutions of (1.1) for some nonlinearities [2],[9].
Here we limit ourselves to the radial solutions of (1.1). Recently, it is
proved that the uniqueness of the positive solutions of

Au+Adut+u? =0 in Bg,

(12) u =0 on OBg,
where p € (1,2£2] for n > 3, p > 1 for n = 2 and Bp is a ball
of radius R in R™ [8],[12]. In the remaining case of a supercritical

Received March 9, 1995.

1991 AMS Subject Classification: 35B05, 35J60.

Key words: Positive radial solution, Elliptic equation annulus.

Supported in part by BSRI-96-1421, GARC and KOSEF-95-0701-04-01-3 .



382 Soo Hyun Bae, Sang Don Park and Dae Hy-on Pahk

p > 2£2 uniqueness is no longer valid [4]. These subtle phenomena
also take place for the annulus [8]. Note that Pohozaev’s identity is
powerful to obtain uniqueness results of equation (1.2) for 1 < p < ﬁ'—g
in a ball or an annulus. When there is no growth condition imposed
on f, uniqueness has been proved in a “thin domain™ [10]. Assuming
existence, we shall describe the behavior of upper bounds of B — A4 as
A — 0or A — co. With these observations, we ostablish uniqueness
of pr.s. of problem (1.1) under an “inner radius” condition even if

fw) = Xu+u?, p> 2L
We assume that f satisfies the following condit ons:

(H-1) £(0) =0, lim 109

u—tl+ Y
(H-2) wf'(w) > f(u) >0 inwu >0,
(H-3) f(u) = O(w”) asu— oo with p > 1.

=1,

Under the hypotheses (H-1) and (H-2}, if (1.1) has a positive solution,
then A € (0,A;), where A, is the first eigenvalue of the Laplacian —A
with zero boundary data. In [9], it is proved that for any A € (0, A,),
there exists a positive radial solution of (1.1) provided f satisfies (H-1),
(H-2) and (H-3)" uf(u) > 2(1 + ¢) fou f(t)dt for u large and ¢ > 0. We
can give a simple proof different from that in [9].

Our techniques are a shooting method and Sturrm’s comparison prin-
ciple.

2. Upper bounds of B depending on A
Since we are interested in radial solutions, we write (1.1) as

n-—1

(2.1) u"(r) + u'(r) + flu(r)

whenn > 2 A=1.
We assum that f satisfies (H-1) - (H-3). For p.r.s. of (2.1), a “phase-
plane” analysis shows that there is a unique m such that u'(m) = 0
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and so u'(r) > 0 for 4 < r <m and u'(r) < 0 for m < r < B [6]. We
denote h = u(m) ; the maximum of u.
Now, we define an “energy function” H(r) by

ST
a(r) = "0 )

where F(u) = fo t)dt. Then

(2.2) H(r)= —ﬁ——l(u'(r))z <0

-
First, we can give a universal upper bound of B — A. The main idea
of estimate is included in [6].

ProposiTioN 2.1. If A =1,u isapr.s of (11), then

3
B~ A < - “+n«1

Proof. For r € [A, m], integrating H' from r to m gives
u'(r) > [2F(h) ~ 2F (u(r))]'/*.
(H-1) and (H-2) imply

m~4</m u'(r)dr
T Ja [2F(h) = 2F (u(r))]1/?

- /7n £ (r)dr 7
Ja [pe - w2

Next, we define 8 by tanf = ﬂu’- Then for » € [m,B), =% < 8 < 0. We
differentiate to get

2
uw'u — o

=
u? +u'?
”"]uu - flu)u ~ u'? )
= > < —1—-— sin 26.
u? + u! 2r
IfB—-m>m+n-—1. then forn -1 < r—-m<71t+n-— 1 we have
T > I=m > _gin?20 and so ' < —1 f"+7r+n Oldr < - I
n-1 — n-1 =— m+n—1

This contradicts —5 < 6 < 0. F}l(rofore B —m < 7T4+n-1 and
B - A< 57r+n~l. |

Before estimating upper bound of B — A sharply, we state the fol-
lowing theorem which can be found in [6].
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THEOREM 2.2. Let f be a continuous real function satisfying f(u) >
0 foru >0 and 0 < A < co. Assume (H-1) and (H-3).
(1) Ifp =1, there are constants 0 < dy < do such that there exists
a p.r.s. to problem (1.1) if d; < B~ A < dy and no p.r.s. if
B-A<diorB—-A>d,.
(2) Ifp > 1, there is a constant d > 0 such that there is a p.r.s. to
problem (1.1) if 0 < B~ A <d and no p.~.s. if B— A > d.

Let us fix A > 0 and denote Cy(A) the suprenum of B > A such
that there exists a p.r.s. of (1.1). For simplicity. we assume A = 1.
Then, from (2.2), we have

u'(B)? < 2F(h) < u'(A)%

Since h — 0 as u'(4) — 0, a p.r.s. of the following equation with
u(A) = 0 must be considered.

n-—1

(2.3) u''(r) + u(ri+u(r)=0 onf.

r
Sturm’s comparison theorem implies that the second zeros of positive
solutions of (2.1) converges to the second zero of a solution of (2.3) as
u'(A) — 0. The linear equation (2.3) is a variant of Bessel’s equation.
We set .
u(r) =r"7 o(r).
Then the equation in (2.3) is transformed into the following Bessel’s
equation
(B=2 )2
2
2

N
(2.4) v+ }r— + {1 - Ju =0,

This equation has a solution :
v(r) = Yacz (A2 (r) = Juca ()Y 2 (1),

where J, and Y, are the Bessel functions of the first and the second

. . : 1
kind of order a respectively. The variants of constants w(r) =rzo(r)
transforms (2.4) into

—i\2 1
() -1

r?

(2.5) w" + (1 Jw = 0.
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Then the equation (2.5) is decided into three types according to the
dimension of space. Proposition 2.1. implies a well-known fact that
Ci(A) — mas A T oo. Shifting solutions of (2.5), we observe that C';( A)
1s monotone. Since Yg;_?('r) has a singularity at (i, C;(A) converges to
the first zero of JnT—2<r) except 0 as A — 0. We state these phenomena

as follows.

THEOREM 2.3. Let Cp(A) the supremum of B > A such that there
exists a p.r.s. of (1.1).
(1} 1) Ifn=2,thenCi<mandC, | z(21as A |0, C; T 7 as
AT
1) If n=3, then C, = 7.
i) If n >4, then Cy >mand Cy; T2(n)as A 0,Cy | 7 as

A T oo, where z(n) is the first zero of JnT—Q(T) except 0.

(2) Cal4) = Z5Ci(VAA).

Now, we recall uniqueness results in [10].

THEOREM 2.4. If B/A < (n -- 1)n_1-5 forn > 3, and B/A < ¢ for
n = 2, then (1.1) can have at most one positive radial solution provided

(H-2).

COROLLARY 2.5. For sufficiently large A depending only n, A, (1.1)
has at most one positive radial solution provided f satisfies (H-1)-(H-

3).

Proof. Assuming existence, the ratio B/A converges to 1 as A — oc,
namely 2 become a thin domain. O

COROLLARY 2.6. For any A € (0, ), there exists a positive radial
solution of (1.1) provided that f satisfles (H-1) - (H-3).

Proof. If X € (0, ), then Cy > C,, since eigenfunctions with the
first eigenvalue A; are radially symmetric. Then existence results are
obtained by Theorem 2.2. [

REMARK. The first Dirichlet eigenvalue Ay is characterized by

Ci(A
/\1 = (B_lé—/—i)2
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Of course, if n = 3,

™

B—A

/\1 = ( )23

where ! = {z € R"| 4 < |z| < B! is an annulus in R™.

3.
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