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SYMMETRY OF COMPONENTS FOR RADIAL SOLUTIONS
OF ~-LAPLACIAN SYSTEMS

YUN WANG

ABSTRACT. In this paper, we give several sufficient conditions ensuring
that any positive radial solution (u,v) of the following ~-Laplacian sys-
tems in the whole space R™ has the components symmetry property u = v

—div(|Vu|""2Vu) = f(u,v) in R?,
—div(|Vv|7"2V0) = g(u,v) in R™.

Here n > v, v > 1.
Thus, the systems will be reduced to a single y-Laplacian equation:

—div(|[Vu|""2Vu) = f(u) in R™.

Our proofs are based on suitable comparation principle arguments, com-
bined with properties of radial solutions.

1. Introduction

In 2008, Li and Ma [10] studied the stationary Schrédinger system
(1.1) { —Au =vPv? in R,

—Av=u%? in R",
and obtained a components symmetry result:

Proposition 1.1. Assumen > v, 1 < p,g < Z—fg and p+q = Z—fg Then

any (L% (R™))2-positive solution pair (u,v) to (1.1) is radial symmetric, and
hence u =v = a(b? + |z — 20|?)?~™/2 with a,b > 0 and o € R".

The proof was achieved by the classification result in [4] and the method
of moving planes based on the conformal invariant property. Afterwards, Lei
and Li ([8]) studied the asymptotic radial symmetry and decay estimates of
positive integrable solutions of
(1.2) { —div(|Vu|""2Vu) = uPv? in R",

' —div(|Vo["72Vv) = vPud in R,
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where n >~,v>1,and p,g >0 and p+q= L —

In 2012, Quittner and Souplet studied the Ir;ore general Laplacian systems
(cf. [12])

—Au= f(u,v) in R",
(1.3) { —Av =g(u,v) in R™,

under some ‘monotonicity’ assumption

and also obtained further interesting components symmetry results.

Such class of systems appears in the modeling of Bose-Einstein condensates
which is described by the static Schrodinger equations [11]. The physical and
mathematic background can be see in [1] and [3] and other related references.

In this paper, we expect to generalize those components symmetry property
in [12] to the v-Laplacian systems

{ —div(|Vu|"=2Vu) = f(u,v) in R,

(1.5) —div(|Vv["72Vv) = g(u,v) in R™.

Here n >, v > 1, and f, g satisfy (1.4) and other suitable growth assumptions
on f,g. In what follows, we assume that f, g :[0,00) — R are continuous.

For the y-Laplacian equations with v # 2, it seems difficult to handle the
general classical solutions in view of its nonlinearity and degeneration. As a
try for it, we only consider the radial classical solutions in this paper.

We say that a couple of nonnegative functions (u,v) is semitrivial if one
component is equal to 0 and the other is not (with the convention 0° = 1).

Theorem 1.2. Letn >y, vy>1, and 0 <p,t < % — 1. Assume that f,g
satisfy (1.4), and for each n > 0, there exists ¢ = ¢(n) > 0 such that

(1.6) flu,v) > cu?  for all v>mn, u>0,
and
(1.7) g(u,v) > vt forall u>mn, u>0.

Then any nmonnegative radial solution (u,v) of (1.5) is either semitrivial or
satisfies u = v.

The following corollary is a special case of Theorem 1.2 concerning the sys-
tem

—di v—2 = uPp? i n
(1.8) { div(|Vu["~*Vu) = wPv? in R7,

—div(|Vo[*72Vv) = v'u® in R™.
Here n > ~, v >1, and p,q,t,s > 0.

Corollary 1.3. Letn >, v>1,

(1.9) g—t=s-p>0,
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and

(n—1)y
n—7°

Then any nonnegative radial solution (u,v) of (1.8) is either semitrivial or

satisfies u = v.

(1.10) 0<p,t< —1.

The following corollary is also a special case of Corollary 1.3 concerning the
system (1.2).

Corollary 1.4. Assumen >~,v>1, andp+q= % —1. Then any positive
radial solution (u,v) of (1.2) satisfies u =v.

Remark 1.1. (i) Comparing with the works of [5] and [10], the positive solutions
of (1.2) with v # 2 may have not the radial symmetry property even if the
exponent p + ¢ satisfies the critical condition for Sobolev embedding. In fact,
the y-Laplacian equations have not the conformal invariant property except
for some energy minimal solutions (ground states) (cf. [2]). Therefore, the
classification result is hardly obtained.

(i) When u = v, (1.2) is reduced to a single equation. According to [8]
and [9], the integrable solutions of this single equation decay with the fast rate
when |z| — oo.

According to the conclusion pointed out in [12], the condition g—t = s—p in
(1.9) is necessary. In addition, the following theorem implies that the conditions
(1.9) and (1.10) are not purely technical.

Theorem 1.5. Letn >, v>1 and p,q,t,s > 0.

(i) Assume ¢ —t = s —p > 0. Then any nonnegative solution (u,v) of (1.8)
satisfies u > v or v > u. Furthermore, if p+ q < % — 1, the nonnegative
radial solution is semitrivial.

(ii) Let g =1t > n"—ly —1 and p=s > 0. Then there ezists a positive solution
(u,v) of (1.8), such that u > v in R"™. More precisely, we have lim|,|_,o v(x) =

0 and u = v+ 1. Moreover, if ¢ = s, then the couple (v,u) is also a solution.

(iii) Let p =t > ;2= — 1 — 55—
exists a positive function w such that the couple (u,v) = (cw,w/c) solves (1.8)

for any ¢ > 0.

and g = s = p— (y—1). Then there

2. Proof of Theorem 1.2

The properties of our mainly study of the radial solution U(x) = u(r) for
(2.1) —A,U == —div(|VU|"72VU) > 0,
in our arguments is contained in the following lemma.

Lemma 2.1. Let U > 0 belong to C*(R™). If U(x) = u(r) is a radial solution
of (2.1), then
(i) v'(r) <0 forr>0;
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(ii) u(r) > 1 := limp_ 00 u(R) for r > 0.
Proof. Clearly, if U solves (2.1), then u is a radial solution of
(2.2) —(r" MW T2Y >0, r>0.
By integrating on both sides of (2.2) from 0 to R with R > 0, we obtain
[ (R)|"~*u'(R) < 0,

and hence (i) is verified.
In addition, u is nonincreasing and nonnegative. Thus, [ is well-defined and
(ii) is proved. O

The following lemma plays the key role in this paper. The idea of the proof
comes from [12] which appears in Souplet’s earlier paper (cf. Lemma 2.7 of

[14]).

Lemma 2.2. Assume that f, g satisfy

(2.3) f(XY)>9(X,)Y), 0<X<V.
If (u,v) is a nonnegative radial solution of (1.5) such that
(2.4) lim info(R) =0,

R—o00

then v <wu in R™.
Proof. Let w = v —u. By (2.3), we have
(2.5) Awv—Aywu=f—-—g>0 in {w>0}.

We prepare a standard smooth replacement of the positive part function. Let
H € C?*(R) be a function with the following properties

(2.6) 0<H(t) <ty =max(t0) fort € R, H'(t),H"(t) > 0 for t > 0.
We then set
h(R) := H(w)(R) for R> 0.
Using (2.6), we have
(2.7) 0<h(R)<wi(R)<wv(R), R>0
Consequently, in view of (2.4), we have

lim inf h(r) = 0.

r—00

It follows that there exists a sequence R; — oo such that h'(R;) < 0.
According to Lemma 2.1(i) the integral mean value theorem, we get

1
|0pu 7™t — |0 = (y — 1)/ [t10ru] + (1 — t)|0pv]]72dt0,w.
0
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In view of h/(R;) < 0, there holds

/ (0rul™" — |80\ B (w)db

(2.8) - )

= (y— 1)|S”_1|h'(RZ-)R?’1/O [t|0,u| + (1 — t)|8,v]]Y~2dt < 0.
On the other hand, when v > 2, we have

(2.9) |Vw|? < (Vo' "2Vo — |Vu|T"2Vu)V (v — u);

and when 1 < vy < 2, we have

(2.10) (Vo] + |Vu)* 2| Vw|? < ¢(|Vo]" 2V — [Vu|? " 2Vu)V(v — u).

Therefore,
(i) when v > 2, by (2.8) and (2.9), we have

0 < H" (w)|Vw|"dz

Br,
< H" (w)(|Vo]" 2 Vo — |Vu| " *Vu)V (v — u)da
Bg,
= [ (IVo]" 2V — |Vu| " 2Vu)VH' (w)dz
Bg,
_ / (0,u7 =" — (B0 YV H (w)ds — | (Ayv — Aju)H' (w)dz
OB, B,
< —/ (f = 9)H'(w)dz < 0.
Br,

i

(ii) When 1 < v < 2, by the same argument of (i), from (2.10) we also
deduce that

0< / (Vo] + [Vul)—2H" ()| Vi|2dz < 0.
Ry

Therefore, for v > 1, we always have Vw = 0 on R", which implies that w

is a constant. Going back to (2.7) and (2.4), we conclude that wy = 0, and

hence v < u. O

Proof of Theorem 1.2. In view of Lemma 2.2, it suffices to show that either
(u,v) is semitrivial or

(2.11) lim infu(R) = lim infou(R) = 0.

R—o R—o

Assume, for instance, that the first limit does not hold. Then there exists
C > 0 such that v > C in R™ by (ii) of Lemma 2.1. Thus, —Ayv > & in
R™ by assumption (1.7). According to the Liouville type results in [13], it is
known that v = 0 by virtue of r < % — 1. The proof is complete. O
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Remark 2.1. A couple (u,0) is a semitrivial solution of (1.8) if and only
if » > 0, and either ¢ > 0 and u is a p-harmonic function (i.e., it solves
—div(|[Vu|"=2Vu) = 0),or g =0, n > v, p > 7= — 1, and u solves

—div(|Vu|""?Vu) =u? in R"

(the existence is showed in [13]). A symmetric statement of course still holds
for semitrivial solutions of the form (0, v).

3. Proof of Theorem 1.5
First we state a Pohozaev type result.

Lemma 3.1. If the boundary value problem

—Ayv = f(v) =(1+v)Pv?, =z € Bg,
v=0, ¢ € 0Bg,

has positive radial solutions, then

ny
/BR vf(v)de < p— /BR F(v)dz.
Here B = Bg(0) and F(v) = [; f(t)dt.

(3.1)

Proof. Let v be the positive solution of the boundary value problem (3.1).
We multiply the equation in (3.3) by (2 - Vv) and integrate over Br. Using
integration by parts, we obtain

- Ajv(z - Vo)dz
Br

- / (|Vo|" 2V - v) (Vv - 2)ds + / (Vo' 2V0)V(Vu - z)dx
OBRr

Br

1
—R/ (|Vv|772|@|2)d5+/ |Vv|7dz+—/ x - V(|Vo|")dz
OBRr ov Br Y

Br

_ 1—

S— 7/ |vv|7dz+—73/ IVo|7ds.
Y Br Y dBr

The last equality is deduced by the radial symmetry of v. In addition, we get

(v)(x - Vv)dr = /B x-VF(v)dx

= R/aBR F(v)ds — n/BR F(v)dz

= —n/ F(v)dz
Br
by using F'(v) = 0 on 0Bg. Thus,

_ 1—
L 7/ |VouYdz + —,YR/ [Vou|ds = fn/ F(v)dz.
v Br v dBr Br

Br
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Noting v > 1, we obtain

1—
—,YR/ |[Vo|7ds < 0,
OBRr

Y
and hence
n—-y
|[VolYdz < n F(v)dz.
,y BR BR

On the other hand, multiply the equation in (3.3) by v. Integrating by parts,

we obtain
/ vf(v)de = —/ (Ayv)vde = / |Voul7dz.
Br Br Br

Combining with the result above, we complete the proof easily. (I

Proof of Theorem 1.5. (i) In view of Lemma 2.2, it is sufficient to check that
either limp_, o0 inf u(R) = 0 or limp_, o inf v(R) = 0, which implies u < v or
v < u by Lemma 2.2. If these were not the case, then u,v > C' > 0 in R™ by
(ii) of Lemma 2.1. Thus, —A,u > ¢ > 0 in R". Namely,

—R'YM(RMTHG Y > e

Multiplying by R"~! and integrating from 0 to R, we see that
(3.2) |u'(R)|"%u/(R) < —cR for R>0.
Noting (i) of Lemma 2.1, we get —u’ > 0 which implies

! (R)P =20/ (R) = —(—u/(R))" .
Combining with (3.2) yields

W (R) < —(cR)™1 for R> 0.
Integrating from 7y to r, we get

-1 1 »
cr-Try-1,

u(r) < ulrg) —

When r is sufficiently large, u is negative. It is a contradiction.
Moreover, without loss of generality, we assume u < v. Then from (1.8) it
follows that
—div(|Vu[""2Vu) > uPT in R".
According to the Liouville type results in [13], we get u = 0 in view of p+ ¢ <
(n=1)y 1

prym
(ii) We look for a solution such that w = v 4+ 1. Then system (1.8) becomes
equivalent to the single equation

(3.3) —Ayv=fv)=1+v)Pv?, zeR"™
Let F(t) = fot f(7)dr. We claim that

(3.4) tf(t) - L F@)>0, t>0.




312 YUN WANG
In fact, in view of (3.3) and integrating by parts, we have

F(t) = /0 (14 7)Pridr

tq+1(1+t>p th+1
qg+1 7/0 q+1

a((1+7)")

1 t
=— 1+tptq“—/ 1+ 7)P Ly
) [ p147) ]

1
< qu—ltf(t)'

Since ¢ > L — 1, we obtain
n—y

tf(t) > (¢ +DF(t) >

Therefore, (3.4) is verified.

According to Lemma 3.1, we know the boundary value problem (3.1) does
not admit any positive solution by noting (3.4).

Next, consider the following initial value problem

{ Y = (), 80,

(3.5) v(0) = 1,4/(0) = 0.

Clearly, one of the following two cases holds

Case 1: v > 0,v' <0 for all £ > 0;

Case 2: v has the first zero R..

We claim that Case 2 does not happen, since this would contradict the above
nonexistence statement on the ball Br,. We conclude that problem (3.5) and
hence (3.3), admits a positive entire solution v which is decaying to zero. More
precisely, according to the results in [6] and [7], v decays fast with the rate =
when ¢ = n"—ly — 1 and slowly with rate F(,L—H when ¢ > n"—ly -1

(iii) Let (u,v) = (cw,c™'w) with ¢ a positive constant. Then system (1.8)

becomes equivalent to

—Aw = wPT T
According to the existence results in [13], we see that this equation admits
positive solutions by virtue of 2p — v +1 > n—"_% -1 O
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