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SYMMETRY OF COMPONENTS FOR RADIAL SOLUTIONS

OF γ-LAPLACIAN SYSTEMS

Yun Wang

Abstract. In this paper, we give several sufficient conditions ensuring
that any positive radial solution (u, v) of the following γ-Laplacian sys-
tems in the whole space Rn has the components symmetry property u ≡ v

{

−div(|∇u|γ−2∇u) = f(u, v) in R
n,

−div(|∇v|γ−2∇v) = g(u, v) in R
n.

Here n > γ, γ > 1.
Thus, the systems will be reduced to a single γ-Laplacian equation:

−div(|∇u|γ−2∇u) = f(u) in R
n.

Our proofs are based on suitable comparation principle arguments, com-
bined with properties of radial solutions.

1. Introduction

In 2008, Li and Ma [10] studied the stationary Schrödinger system

(1.1)

{

−∆u = upvq in R
n,

−∆v = uqvp in R
n,

and obtained a components symmetry result:

Proposition 1.1. Assume n > γ, 1 ≤ p, q ≤ n+2
n−2 and p + q = n+2

n−2 . Then

any (L
2n

n−2 (Rn))2-positive solution pair (u, v) to (1.1) is radial symmetric, and

hence u ≡ v = a(b2 + |x− x0|2)(2−n)/2 with a, b > 0 and x0 ∈ R
n.

The proof was achieved by the classification result in [4] and the method
of moving planes based on the conformal invariant property. Afterwards, Lei
and Li ([8]) studied the asymptotic radial symmetry and decay estimates of
positive integrable solutions of

(1.2)

{

−div(|∇u|γ−2∇u) = upvq in R
n,

−div(|∇v|γ−2∇v) = vpuq in R
n,
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where n > γ, γ > 1, and p, q > 0 and p+ q = nγ
n−γ − 1.

In 2012, Quittner and Souplet studied the more general Laplacian systems
(cf. [12])

(1.3)

{

−∆u = f(u, v) in R
n,

−∆v = g(u, v) in R
n,

under some ‘monotonicity’ assumption

(1.4) (X − Y )[f(X,Y )− g(X,Y )] ≤ 0, X, Y ≥ 0,

and also obtained further interesting components symmetry results.
Such class of systems appears in the modeling of Bose-Einstein condensates

which is described by the static Schrödinger equations [11]. The physical and
mathematic background can be see in [1] and [3] and other related references.

In this paper, we expect to generalize those components symmetry property
in [12] to the γ-Laplacian systems

(1.5)

{

−div(|∇u|γ−2∇u) = f(u, v) in R
n,

−div(|∇v|γ−2∇v) = g(u, v) in R
n.

Here n > γ, γ > 1, and f, g satisfy (1.4) and other suitable growth assumptions
on f, g. In what follows, we assume that f, g : [0,∞) → R are continuous.

For the γ-Laplacian equations with γ 6= 2, it seems difficult to handle the
general classical solutions in view of its nonlinearity and degeneration. As a
try for it, we only consider the radial classical solutions in this paper.

We say that a couple of nonnegative functions (u, v) is semitrivial if one
component is equal to 0 and the other is not (with the convention 00 = 1).

Theorem 1.2. Let n > γ, γ > 1, and 0 ≤ p, t ≤ (n−1)γ
n−γ − 1. Assume that f, g

satisfy (1.4), and for each η > 0, there exists c = c(η) > 0 such that

(1.6) f(u, v) ≥ cup for all v ≥ η, u ≥ 0,

and

(1.7) g(u, v) ≥ cvt for all u ≥ η, u ≥ 0.

Then any nonnegative radial solution (u, v) of (1.5) is either semitrivial or

satisfies u ≡ v.

The following corollary is a special case of Theorem 1.2 concerning the sys-
tem

(1.8)

{

−div(|∇u|γ−2∇u) = upvq in R
n,

−div(|∇v|γ−2∇v) = vtus in R
n.

Here n > γ, γ > 1, and p, q, t, s ≥ 0.

Corollary 1.3. Let n > γ, γ > 1,

(1.9) q − t = s− p ≥ 0,
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and

(1.10) 0 ≤ p, t ≤
(n− 1)γ

n− γ
− 1.

Then any nonnegative radial solution (u, v) of (1.8) is either semitrivial or

satisfies u ≡ v.

The following corollary is also a special case of Corollary 1.3 concerning the
system (1.2).

Corollary 1.4. Assume n > γ, γ > 1, and p+q = nγ
n−γ −1. Then any positive

radial solution (u, v) of (1.2) satisfies u ≡ v.

Remark 1.1. (i) Comparing with the works of [5] and [10], the positive solutions
of (1.2) with γ 6= 2 may have not the radial symmetry property even if the
exponent p + q satisfies the critical condition for Sobolev embedding. In fact,
the γ-Laplacian equations have not the conformal invariant property except
for some energy minimal solutions (ground states) (cf. [2]). Therefore, the
classification result is hardly obtained.

(ii) When u ≡ v, (1.2) is reduced to a single equation. According to [8]
and [9], the integrable solutions of this single equation decay with the fast rate
when |x| → ∞.

According to the conclusion pointed out in [12], the condition q−t = s−p in
(1.9) is necessary. In addition, the following theorem implies that the conditions
(1.9) and (1.10) are not purely technical.

Theorem 1.5. Let n > γ, γ > 1 and p, q, t, s ≥ 0.
(i) Assume q − t = s− p ≥ 0. Then any nonnegative solution (u, v) of (1.8)

satisfies u ≥ v or v ≥ u. Furthermore, if p+ q ≤ (n−1)γ
n−γ − 1, the nonnegative

radial solution is semitrivial.

(ii) Let q = t ≥ nγ
n−γ − 1 and p = s ≥ 0. Then there exists a positive solution

(u, v) of (1.8), such that u > v in R
n. More precisely, we have lim|x|→∞ v(x) =

0 and u ≡ v + 1. Moreover, if q = s, then the couple (v, u) is also a solution.

(iii) Let p = t ≥ nγ
n−γ − 1 − γ2

2(n−γ) and q = s = p − (γ − 1). Then there

exists a positive function w such that the couple (u, v) = (cw,w/c) solves (1.8)
for any c > 0.

2. Proof of Theorem 1.2

The properties of our mainly study of the radial solution U(x) = u(r) for

(2.1) −∆γU := −div(|∇U |γ−2∇U) ≥ 0,

in our arguments is contained in the following lemma.

Lemma 2.1. Let U ≥ 0 belong to C2(Rn). If U(x) = u(r) is a radial solution

of (2.1), then
(i) u′(r) ≤ 0 for r > 0;
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(ii) u(r) ≥ l := limR→∞ u(R) for r ≥ 0.

Proof. Clearly, if U solves (2.1), then u is a radial solution of

(2.2) −(rn−1|u′|γ−2u′)′ ≥ 0, r ≥ 0.

By integrating on both sides of (2.2) from 0 to R with R > 0, we obtain

|u′(R)|γ−2u′(R) ≤ 0,

and hence (i) is verified.
In addition, u is nonincreasing and nonnegative. Thus, l is well-defined and

(ii) is proved. �

The following lemma plays the key role in this paper. The idea of the proof
comes from [12] which appears in Souplet’s earlier paper (cf. Lemma 2.7 of
[14]).

Lemma 2.2. Assume that f, g satisfy

(2.3) f(X,Y ) ≥ g(X,Y ), 0 ≤ X ≤ Y.

If (u, v) is a nonnegative radial solution of (1.5) such that

(2.4) lim
R→∞

inf v(R) = 0,

then v ≤ u in R
n.

Proof. Let w = v − u. By (2.3), we have

(2.5) ∆γv −∆γu = f − g ≥ 0 in {w ≥ 0}.

We prepare a standard smooth replacement of the positive part function. Let
H ∈ C2(R) be a function with the following properties

(2.6) 0 ≤ H(t) ≤ t+ = max(t, 0) for t ∈ R, H ′(t), H ′′(t) > 0 for t > 0.

We then set

h(R) := H(w)(R) for R > 0.

Using (2.6), we have

(2.7) 0 ≤ h(R) ≤ w+(R) ≤ v(R), R > 0

Consequently, in view of (2.4), we have

lim
r→∞

inf h(r) = 0.

It follows that there exists a sequence Ri → ∞ such that h′(Ri) < 0.
According to Lemma 2.1(i) the integral mean value theorem, we get

|∂ru|
γ−1 − |∂rv|

γ−1 = (γ − 1)

∫ 1

0

[t|∂ru|+ (1− t)|∂rv|]
γ−2dt∂rw.
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In view of h′(Ri) < 0, there holds

(2.8)

∫

∂BRi

(|∂ru|
γ−1 − |∂rv|

γ−1)H ′(w)dθ

= (γ − 1)|Sn−1|h′(Ri)R
n−1
i

∫ 1

0

[t|∂ru|+ (1 − t)|∂rv|]
γ−2dt ≤ 0.

On the other hand, when γ > 2, we have

(2.9) |∇w|γ ≤ c(|∇v|γ−2∇v − |∇u|γ−2∇u)∇(v − u);

and when 1 < γ ≤ 2, we have

(2.10) (|∇v|+ |∇u|)γ−2|∇w|2 ≤ c(|∇v|γ−2∇v − |∇u|γ−2∇u)∇(v − u).

Therefore,
(i) when γ > 2, by (2.8) and (2.9), we have

0 ≤

∫

BRi

H ′′(w)|∇w|γdx

≤

∫

BRi

H ′′(w)(|∇v|γ−2∇v − |∇u|γ−2∇u)∇(v − u)dx

=

∫

BRi

(|∇v|γ−2∇v − |∇u|γ−2∇u)∇H ′(w)dx

=

∫

∂BRi

(|∂ru|
γ−1 − |∂rv|

γ−1)H ′(w)ds −

∫

BRi

(∆γv −∆γu)H
′(w)dx

≤ −

∫

BRi

(f − g)H ′(w)dx ≤ 0.

(ii) When 1 < γ ≤ 2, by the same argument of (i), from (2.10) we also
deduce that

0 ≤

∫

BRi

(|∇v| + |∇u|)γ−2H ′′(w)|∇w|2dx ≤ 0.

Therefore, for γ > 1, we always have ∇w = 0 on R
n, which implies that w

is a constant. Going back to (2.7) and (2.4), we conclude that w+ = 0, and
hence v ≤ u. �

Proof of Theorem 1.2. In view of Lemma 2.2, it suffices to show that either
(u, v) is semitrivial or

(2.11) lim
R→∞

inf u(R) = lim
R→∞

inf v(R) = 0.

Assume, for instance, that the first limit does not hold. Then there exists
C > 0 such that u ≥ C in R

n by (ii) of Lemma 2.1. Thus, −∆γv ≥ c̃vr in
R

n by assumption (1.7). According to the Liouville type results in [13], it is

known that v ≡ 0 by virtue of r ≤ (n−1)γ
n−γ − 1. The proof is complete. �
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Remark 2.1. A couple (u, 0) is a semitrivial solution of (1.8) if and only
if r > 0, and either q > 0 and u is a p-harmonic function (i.e., it solves
−div(|∇u|γ−2∇u) = 0), or q = 0, n > γ, p ≥ nγ

n−γ − 1, and u solves

−div(|∇u|γ−2∇u) = up in R
n

(the existence is showed in [13]). A symmetric statement of course still holds
for semitrivial solutions of the form (0, v).

3. Proof of Theorem 1.5

First we state a Pohozaev type result.

Lemma 3.1. If the boundary value problem

(3.1)

{

−∆γv = f(v) = (1 + v)pvq, x ∈ BR,
v = 0, x ∈ ∂BR,

has positive radial solutions, then
∫

BR

vf(v)dx <
nγ

n− γ

∫

BR

F (v)dx.

Here BR = BR(0) and F (v) =
∫ v

0 f(t)dt.

Proof. Let v be the positive solution of the boundary value problem (3.1).
We multiply the equation in (3.3) by (x · ∇v) and integrate over BR. Using

integration by parts, we obtain

−

∫

BR

∆γv(x · ∇v)dx

= −

∫

∂BR

(|∇v|γ−2∇v · ν)(∇v · x)ds +

∫

BR

(|∇v|γ−2∇v)∇(∇v · x)dx

= −R

∫

∂BR

(|∇v|γ−2|
∂v

∂ν
|2)ds+

∫

BR

|∇v|γdx+
1

γ

∫

BR

x · ∇(|∇v|γ)dx

= −
n− γ

γ

∫

BR

|∇v|γdx+
1− γ

γ
R

∫

∂BR

|∇v|γds.

The last equality is deduced by the radial symmetry of v. In addition, we get
∫

BR

f(v)(x · ∇v)dx =

∫

BR

x · ∇F (v)dx

= R

∫

∂BR

F (v)ds− n

∫

BR

F (v)dx

= −n

∫

BR

F (v)dx

by using F (v) = 0 on ∂BR. Thus,

−
n− γ

γ

∫

BR

|∇v|γdx+
1− γ

γ
R

∫

∂BR

|∇v|γds = −n

∫

BR

F (v)dx.
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Noting γ > 1, we obtain

1− γ

γ
R

∫

∂BR

|∇v|γds < 0,

and hence
n− γ

γ

∫

BR

|∇v|γdx < n

∫

BR

F (v)dx.

On the other hand, multiply the equation in (3.3) by v. Integrating by parts,
we obtain

∫

BR

vf(v)dx = −

∫

BR

(∆γv)vdx =

∫

BR

|∇v|γdx.

Combining with the result above, we complete the proof easily. �

Proof of Theorem 1.5. (i) In view of Lemma 2.2, it is sufficient to check that
either limR→∞ inf u(R) = 0 or limR→∞ inf v(R) = 0, which implies u ≤ v or
v ≤ u by Lemma 2.2. If these were not the case, then u, v ≥ C > 0 in R

n by
(ii) of Lemma 2.1. Thus, −∆γu ≥ c > 0 in R

n. Namely,

−R1−n(Rn−1|u′|γ−2u′)′ ≥ c.

Multiplying by Rn−1 and integrating from 0 to R, we see that

(3.2) |u′(R)|γ−2u′(R) ≤ −cR for R > 0.

Noting (i) of Lemma 2.1, we get −u′ > 0 which implies

|u′(R)|γ−2u′(R) = −(−u′(R))γ−1.

Combining with (3.2) yields

u′(R) ≤ −(cR)
1

γ−1 for R > 0.

Integrating from r0 to r, we get

u(r) ≤ u(r0)−
γ − 1

γ
c

1
γ−1 r

γ
γ−1 .

When r is sufficiently large, u is negative. It is a contradiction.
Moreover, without loss of generality, we assume u ≤ v. Then from (1.8) it

follows that

−div(|∇u|γ−2∇u) ≥ up+q in R
n.

According to the Liouville type results in [13], we get u ≡ 0 in view of p+ q ≤
(n−1)γ
n−γ − 1.

(ii) We look for a solution such that u = v + 1. Then system (1.8) becomes
equivalent to the single equation

(3.3) −∆γv = f(v) = (1 + v)pvq, x ∈ R
n.

Let F (t) =
∫ t

0
f(τ)dτ . We claim that

(3.4) tf(t)−
nγ

n− γ
F (t) ≥ 0, t ≥ 0.
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In fact, in view of (3.3) and integrating by parts, we have

F (t) =

∫ t

0

(1 + τ)pτqdτ

=
tq+1(1 + t)p

q + 1
−

∫ t

0

τq+1

q + 1
d((1 + τ)p)

=
1

q + 1
[(1 + t)ptq+1 −

∫ t

0

p(1 + τ)p−1τq+1dτ ]

≤
1

q + 1
tf(t).

Since q ≥ nγ
n−γ − 1, we obtain

tf(t) ≥ (q + 1)F (t) ≥
nγ

n− γ
F (t).

Therefore, (3.4) is verified.
According to Lemma 3.1, we know the boundary value problem (3.1) does

not admit any positive solution by noting (3.4).
Next, consider the following initial value problem

(3.5)

{

−t1−n(tn−1|v′|γ−2v′)′ = f(v), t > 0,
v(0) = 1, v′(0) = 0.

Clearly, one of the following two cases holds
Case 1: v > 0, v′ ≤ 0 for all t > 0;
Case 2: v has the first zero R∗.
We claim that Case 2 does not happen, since this would contradict the above

nonexistence statement on the ball BR∗
. We conclude that problem (3.5) and

hence (3.3), admits a positive entire solution v which is decaying to zero. More
precisely, according to the results in [6] and [7], v decays fast with the rate n−γ

γ−1

when q = nγ
n−γ − 1 and slowly with rate γ

q−(γ−1) when q > nγ
n−γ − 1.

(iii) Let (u, v) = (cw, c−1w) with c a positive constant. Then system (1.8)
becomes equivalent to

−∆γw = w2p−γ+1.

According to the existence results in [13], we see that this equation admits
positive solutions by virtue of 2p− γ + 1 ≥ nγ

n−γ − 1. �
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