SYMMETRY OF COMPONENTS FOR RADIAL SOLUTIONS OF γ-LAPLACIAN SYSTEMS

Yun Wang

Abstract. In this paper, we give several sufficient conditions ensuring that any positive radial solution (u, v) of the following γ-Laplacian systems in the whole space \mathbb{R}^{n} has the components symmetry property $u \equiv v$

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|\nabla u|^{\gamma-2} \nabla u\right)=f(u, v) \quad \text { in } \mathbb{R}^{n} \\
-\operatorname{div}\left(|\nabla v|^{\gamma-2} \nabla v\right)=g(u, v) \quad \text { in } \mathbb{R}^{n}
\end{array}\right.
$$

Here $n>\gamma, \gamma>1$.
Thus, the systems will be reduced to a single γ-Laplacian equation:

$$
-\operatorname{div}\left(|\nabla u|^{\gamma-2} \nabla u\right)=f(u) \quad \text { in } \mathbb{R}^{n}
$$

Our proofs are based on suitable comparation principle arguments, combined with properties of radial solutions.

1. Introduction

In 2008, Li and Ma [10] studied the stationary Schrödinger system

$$
\left\{\begin{array}{l}
-\Delta u=u^{p} v^{q} \quad \text { in } \mathbb{R}^{n}, \tag{1.1}\\
-\Delta v=u^{q} v^{p} \quad \text { in } \mathbb{R}^{n},
\end{array}\right.
$$

and obtained a components symmetry result:
Proposition 1.1. Assume $n>\gamma, 1 \leq p, q \leq \frac{n+2}{n-2}$ and $p+q=\frac{n+2}{n-2}$. Then any $\left(L^{\frac{2 n}{n-2}}\left(\mathbb{R}^{n}\right)\right)^{2}$-positive solution pair (u, v) to (1.1) is radial symmetric, and hence $u \equiv v=a\left(b^{2}+\left|x-x_{0}\right|^{2}\right)^{(2-n) / 2}$ with $a, b>0$ and $x_{0} \in \mathbb{R}^{n}$.

The proof was achieved by the classification result in [4] and the method of moving planes based on the conformal invariant property. Afterwards, Lei and $\mathrm{Li}([8])$ studied the asymptotic radial symmetry and decay estimates of positive integrable solutions of

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|\nabla u|^{\gamma-2} \nabla u\right)=u^{p} v^{q} \quad \text { in } \mathbb{R}^{n}, \tag{1.2}\\
-\operatorname{div}\left(|\nabla v|^{\gamma-2} \nabla v\right)=v^{p} u^{q} \quad \text { in } \mathbb{R}^{n},
\end{array}\right.
$$

[^0]where $n>\gamma, \gamma>1$, and $p, q>0$ and $p+q=\frac{n \gamma}{n-\gamma}-1$.
In 2012, Quittner and Souplet studied the more general Laplacian systems (cf. [12])
\[

\left\{$$
\begin{array}{l}
-\Delta u=f(u, v) \quad \text { in } \mathbb{R}^{n} \tag{1.3}\\
-\Delta v=g(u, v) \quad \text { in } \mathbb{R}^{n}
\end{array}
$$\right.
\]

under some 'monotonicity' assumption

$$
\begin{equation*}
(X-Y)[f(X, Y)-g(X, Y)] \leq 0, \quad X, Y \geq 0 \tag{1.4}
\end{equation*}
$$

and also obtained further interesting components symmetry results.
Such class of systems appears in the modeling of Bose-Einstein condensates which is described by the static Schrödinger equations [11]. The physical and mathematic background can be see in [1] and [3] and other related references.

In this paper, we expect to generalize those components symmetry property in [12] to the γ-Laplacian systems

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|\nabla u|^{\gamma-2} \nabla u\right)=f(u, v) \quad \text { in } \mathbb{R}^{n}, \tag{1.5}\\
-\operatorname{div}\left(|\nabla v|^{\gamma-2} \nabla v\right)=g(u, v) \quad \text { in } \mathbb{R}^{n} .
\end{array}\right.
$$

Here $n>\gamma, \gamma>1$, and f, g satisfy (1.4) and other suitable growth assumptions on f, g. In what follows, we assume that $f, g:[0, \infty) \rightarrow \mathbb{R}$ are continuous.

For the γ-Laplacian equations with $\gamma \neq 2$, it seems difficult to handle the general classical solutions in view of its nonlinearity and degeneration. As a try for it, we only consider the radial classical solutions in this paper.

We say that a couple of nonnegative functions (u, v) is semitrivial if one component is equal to 0 and the other is not (with the convention $0^{0}=1$).

Theorem 1.2. Let $n>\gamma, \gamma>1$, and $0 \leq p, t \leq \frac{(n-1) \gamma}{n-\gamma}-1$. Assume that f, g satisfy (1.4), and for each $\eta>0$, there exists $c=c(\eta)>0$ such that

$$
\begin{equation*}
f(u, v) \geq c u^{p} \quad \text { for all } v \geq \eta, u \geq 0 \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
g(u, v) \geq c v^{t} \quad \text { for all } u \geq \eta, u \geq 0 \tag{1.7}
\end{equation*}
$$

Then any nonnegative radial solution (u, v) of (1.5) is either semitrivial or satisfies $u \equiv v$.

The following corollary is a special case of Theorem 1.2 concerning the system

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|\nabla u|^{\gamma-2} \nabla u\right)=u^{p} v^{q} \quad \text { in } \mathbb{R}^{n}, \tag{1.8}\\
-\operatorname{div}\left(|\nabla v|^{\gamma-2} \nabla v\right)=v^{t} u^{s} \quad \text { in } \mathbb{R}^{n} .
\end{array}\right.
$$

Here $n>\gamma, \gamma>1$, and $p, q, t, s \geq 0$.
Corollary 1.3. Let $n>\gamma, \gamma>1$,

$$
\begin{equation*}
q-t=s-p \geq 0, \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq p, t \leq \frac{(n-1) \gamma}{n-\gamma}-1 \tag{1.10}
\end{equation*}
$$

Then any nonnegative radial solution (u, v) of (1.8) is either semitrivial or satisfies $u \equiv v$.

The following corollary is also a special case of Corollary 1.3 concerning the system (1.2).
Corollary 1.4. Assume $n>\gamma, \gamma>1$, and $p+q=\frac{n \gamma}{n-\gamma}-1$. Then any positive radial solution (u, v) of (1.2) satisfies $u \equiv v$.

Remark 1.1. (i) Comparing with the works of [5] and [10], the positive solutions of (1.2) with $\gamma \neq 2$ may have not the radial symmetry property even if the exponent $p+q$ satisfies the critical condition for Sobolev embedding. In fact, the γ-Laplacian equations have not the conformal invariant property except for some energy minimal solutions (ground states) (cf. [2]). Therefore, the classification result is hardly obtained.
(ii) When $u \equiv v,(1.2)$ is reduced to a single equation. According to [8] and [9], the integrable solutions of this single equation decay with the fast rate when $|x| \rightarrow \infty$.

According to the conclusion pointed out in [12], the condition $q-t=s-p$ in (1.9) is necessary. In addition, the following theorem implies that the conditions (1.9) and (1.10) are not purely technical.

Theorem 1.5. Let $n>\gamma, \gamma>1$ and $p, q, t, s \geq 0$.
(i) Assume $q-t=s-p \geq 0$. Then any nonnegative solution (u, v) of (1.8) satisfies $u \geq v$ or $v \geq u$. Furthermore, if $p+q \leq \frac{(n-1) \gamma}{n-\gamma}-1$, the nonnegative radial solution is semitrivial.
(ii) Let $q=t \geq \frac{n \gamma}{n-\gamma}-1$ and $p=s \geq 0$. Then there exists a positive solution (u, v) of (1.8), such that $u>v$ in \mathbb{R}^{n}. More precisely, we have $\lim _{|x| \rightarrow \infty} v(x)=$ 0 and $u \equiv v+1$. Moreover, if $q=s$, then the couple (v, u) is also a solution.
(iii) Let $p=t \geq \frac{n \gamma}{n-\gamma}-1-\frac{\gamma^{2}}{2(n-\gamma)}$ and $q=s=p-(\gamma-1)$. Then there exists a positive function w such that the couple $(u, v)=(c w, w / c)$ solves (1.8) for any $c>0$.

2. Proof of Theorem 1.2

The properties of our mainly study of the radial solution $U(x)=u(r)$ for

$$
\begin{equation*}
-\Delta_{\gamma} U:=-\operatorname{div}\left(|\nabla U|^{\gamma-2} \nabla U\right) \geq 0 \tag{2.1}
\end{equation*}
$$

in our arguments is contained in the following lemma.
Lemma 2.1. Let $U \geq 0$ belong to $C^{2}\left(\mathbb{R}^{n}\right)$. If $U(x)=u(r)$ is a radial solution of (2.1), then
(i) $u^{\prime}(r) \leq 0$ for $r>0$;
(ii) $u(r) \geq l:=\lim _{R \rightarrow \infty} u(R)$ for $r \geq 0$.

Proof. Clearly, if U solves (2.1), then u is a radial solution of

$$
\begin{equation*}
-\left(r^{n-1}\left|u^{\prime}\right|^{\gamma-2} u^{\prime}\right)^{\prime} \geq 0, \quad r \geq 0 \tag{2.2}
\end{equation*}
$$

By integrating on both sides of (2.2) from 0 to R with $R>0$, we obtain

$$
\left|u^{\prime}(R)\right|^{\gamma-2} u^{\prime}(R) \leq 0,
$$

and hence (i) is verified.
In addition, u is nonincreasing and nonnegative. Thus, l is well-defined and (ii) is proved.

The following lemma plays the key role in this paper. The idea of the proof comes from [12] which appears in Souplet's earlier paper (cf. Lemma 2.7 of [14]).

Lemma 2.2. Assume that f, g satisfy

$$
\begin{equation*}
f(X, Y) \geq g(X, Y), \quad 0 \leq X \leq Y \tag{2.3}
\end{equation*}
$$

If (u, v) is a nonnegative radial solution of (1.5) such that

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \inf v(R)=0 \tag{2.4}
\end{equation*}
$$

then $v \leq u$ in \mathbb{R}^{n}.
Proof. Let $w=v-u$. By (2.3), we have

$$
\begin{equation*}
\Delta_{\gamma} v-\Delta_{\gamma} u=f-g \geq 0 \quad \text { in } \quad\{w \geq 0\} . \tag{2.5}
\end{equation*}
$$

We prepare a standard smooth replacement of the positive part function. Let $H \in C^{2}(\mathbb{R})$ be a function with the following properties

$$
\begin{equation*}
0 \leq H(t) \leq t_{+}=\max (t, 0) \text { for } t \in \mathbb{R}, \quad H^{\prime}(t), H^{\prime \prime}(t)>0 \text { for } t>0 \tag{2.6}
\end{equation*}
$$

We then set

$$
h(R):=H(w)(R) \quad \text { for } \quad R>0
$$

Using (2.6), we have

$$
\begin{equation*}
0 \leq h(R) \leq w_{+}(R) \leq v(R), \quad R>0 \tag{2.7}
\end{equation*}
$$

Consequently, in view of (2.4), we have

$$
\lim _{r \rightarrow \infty} \inf h(r)=0
$$

It follows that there exists a sequence $R_{i} \rightarrow \infty$ such that $h^{\prime}\left(R_{i}\right)<0$.
According to Lemma 2.1(i) the integral mean value theorem, we get

$$
\left|\partial_{r} u\right|^{\gamma-1}-\left|\partial_{r} v\right|^{\gamma-1}=(\gamma-1) \int_{0}^{1}\left[t\left|\partial_{r} u\right|+(1-t)\left|\partial_{r} v\right|\right]^{\gamma-2} d t \partial_{r} w .
$$

In view of $h^{\prime}\left(R_{i}\right)<0$, there holds

$$
\begin{align*}
& \int_{\partial B_{R_{i}}}\left(\left|\partial_{r} u\right|^{\gamma-1}-\left|\partial_{r} v\right|^{\gamma-1}\right) H^{\prime}(w) d \theta \\
= & (\gamma-1)\left|S^{n-1}\right| h^{\prime}\left(R_{i}\right) R_{i}^{n-1} \int_{0}^{1}\left[t\left|\partial_{r} u\right|+(1-t)\left|\partial_{r} v\right|\right]^{\gamma-2} d t \leq 0 . \tag{2.8}
\end{align*}
$$

On the other hand, when $\gamma>2$, we have

$$
\begin{equation*}
|\nabla w|^{\gamma} \leq c\left(|\nabla v|^{\gamma-2} \nabla v-|\nabla u|^{\gamma-2} \nabla u\right) \nabla(v-u) \tag{2.9}
\end{equation*}
$$

and when $1<\gamma \leq 2$, we have

$$
\begin{equation*}
(|\nabla v|+|\nabla u|)^{\gamma-2}|\nabla w|^{2} \leq c\left(|\nabla v|^{\gamma-2} \nabla v-|\nabla u|^{\gamma-2} \nabla u\right) \nabla(v-u) \tag{2.10}
\end{equation*}
$$

Therefore,
(i) when $\gamma>2$, by (2.8) and (2.9), we have

$$
\begin{aligned}
0 & \leq \int_{B_{R_{i}}} H^{\prime \prime}(w)|\nabla w|^{\gamma} d x \\
& \leq \int_{B_{R_{i}}} H^{\prime \prime}(w)\left(|\nabla v|^{\gamma-2} \nabla v-|\nabla u|^{\gamma-2} \nabla u\right) \nabla(v-u) d x \\
& =\int_{B_{R_{i}}}\left(|\nabla v|^{\gamma-2} \nabla v-|\nabla u|^{\gamma-2} \nabla u\right) \nabla H^{\prime}(w) d x \\
& =\int_{\partial B_{R_{i}}}\left(\left|\partial_{r} u\right|^{\gamma-1}-\left|\partial_{r} v\right|^{\gamma-1}\right) H^{\prime}(w) d s-\int_{B_{R_{i}}}\left(\Delta_{\gamma} v-\Delta_{\gamma} u\right) H^{\prime}(w) d x \\
& \leq-\int_{B_{R_{i}}}(f-g) H^{\prime}(w) d x \leq 0 .
\end{aligned}
$$

(ii) When $1<\gamma \leq 2$, by the same argument of (i), from (2.10) we also deduce that

$$
0 \leq \int_{B_{R_{i}}}(|\nabla v|+|\nabla u|)^{\gamma-2} H^{\prime \prime}(w)|\nabla w|^{2} d x \leq 0
$$

Therefore, for $\gamma>1$, we always have $\nabla w=0$ on \mathbb{R}^{n}, which implies that w is a constant. Going back to (2.7) and (2.4), we conclude that $w_{+}=0$, and hence $v \leq u$.

Proof of Theorem 1.2. In view of Lemma 2.2, it suffices to show that either (u, v) is semitrivial or

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \inf u(R)=\lim _{R \rightarrow \infty} \inf v(R)=0 \tag{2.11}
\end{equation*}
$$

Assume, for instance, that the first limit does not hold. Then there exists $C>0$ such that $u \geq C$ in \mathbb{R}^{n} by (ii) of Lemma 2.1. Thus, $-\Delta_{\gamma} v \geq \tilde{c} v^{r}$ in \mathbb{R}^{n} by assumption (1.7). According to the Liouville type results in [13], it is known that $v \equiv 0$ by virtue of $r \leq \frac{(n-1) \gamma}{n-\gamma}-1$. The proof is complete.

Remark 2.1. A couple $(u, 0)$ is a semitrivial solution of (1.8) if and only if $r>0$, and either $q>0$ and u is a p-harmonic function (i.e., it solves $\left.-\operatorname{div}\left(|\nabla u|^{\gamma-2} \nabla u\right)=0\right)$, or $q=0, n>\gamma, p \geq \frac{n \gamma}{n-\gamma}-1$, and u solves

$$
-\operatorname{div}\left(|\nabla u|^{\gamma-2} \nabla u\right)=u^{p} \quad \text { in } \quad \mathbb{R}^{n}
$$

(the existence is showed in [13]). A symmetric statement of course still holds for semitrivial solutions of the form $(0, v)$.

3. Proof of Theorem 1.5

First we state a Pohozaev type result.
Lemma 3.1. If the boundary value problem

$$
\left\{\begin{array}{l}
-\Delta_{\gamma} v=f(v)=(1+v)^{p} v^{q}, \quad x \in B_{R}, \tag{3.1}\\
v=0, x \in \partial B_{R},
\end{array}\right.
$$

has positive radial solutions, then

$$
\int_{B_{R}} v f(v) d x<\frac{n \gamma}{n-\gamma} \int_{B_{R}} F(v) d x
$$

Here $B_{R}=B_{R}(0)$ and $F(v)=\int_{0}^{v} f(t) d t$.
Proof. Let v be the positive solution of the boundary value problem (3.1).
We multiply the equation in (3.3) by $(x \cdot \nabla v)$ and integrate over B_{R}. Using integration by parts, we obtain

$$
\begin{aligned}
& -\int_{B_{R}} \Delta_{\gamma} v(x \cdot \nabla v) d x \\
= & -\int_{\partial B_{R}}\left(|\nabla v|^{\gamma-2} \nabla v \cdot \nu\right)(\nabla v \cdot x) d s+\int_{B_{R}}\left(|\nabla v|^{\gamma-2} \nabla v\right) \nabla(\nabla v \cdot x) d x \\
= & -R \int_{\partial B_{R}}\left(|\nabla v|^{\gamma-2}\left|\frac{\partial v}{\partial \nu}\right|^{2}\right) d s+\int_{B_{R}}|\nabla v|^{\gamma} d x+\frac{1}{\gamma} \int_{B_{R}} x \cdot \nabla\left(|\nabla v|^{\gamma}\right) d x \\
= & -\frac{n-\gamma}{\gamma} \int_{B_{R}}|\nabla v|^{\gamma} d x+\frac{1-\gamma}{\gamma} R \int_{\partial B_{R}}|\nabla v|^{\gamma} d s .
\end{aligned}
$$

The last equality is deduced by the radial symmetry of v. In addition, we get

$$
\begin{aligned}
\int_{B_{R}} f(v)(x \cdot \nabla v) d x & =\int_{B_{R}} x \cdot \nabla F(v) d x \\
& =R \int_{\partial B_{R}} F(v) d s-n \int_{B_{R}} F(v) d x \\
& =-n \int_{B_{R}} F(v) d x
\end{aligned}
$$

by using $F(v)=0$ on ∂B_{R}. Thus,

$$
-\frac{n-\gamma}{\gamma} \int_{B_{R}}|\nabla v|^{\gamma} d x+\frac{1-\gamma}{\gamma} R \int_{\partial B_{R}}|\nabla v|^{\gamma} d s=-n \int_{B_{R}} F(v) d x
$$

Noting $\gamma>1$, we obtain

$$
\frac{1-\gamma}{\gamma} R \int_{\partial B_{R}}|\nabla v|^{\gamma} d s<0
$$

and hence

$$
\frac{n-\gamma}{\gamma} \int_{B_{R}}|\nabla v|^{\gamma} d x<n \int_{B_{R}} F(v) d x .
$$

On the other hand, multiply the equation in (3.3) by v. Integrating by parts, we obtain

$$
\int_{B_{R}} v f(v) d x=-\int_{B_{R}}\left(\Delta_{\gamma} v\right) v d x=\int_{B_{R}}|\nabla v|^{\gamma} d x
$$

Combining with the result above, we complete the proof easily.
Proof of Theorem 1.5. (i) In view of Lemma 2.2, it is sufficient to check that either $\lim _{R \rightarrow \infty} \inf u(R)=0$ or $\lim _{R \rightarrow \infty} \inf v(R)=0$, which implies $u \leq v$ or $v \leq u$ by Lemma 2.2. If these were not the case, then $u, v \geq C>0$ in \mathbb{R}^{n} by (ii) of Lemma 2.1. Thus, $-\Delta_{\gamma} u \geq c>0$ in \mathbb{R}^{n}. Namely,

$$
-R^{1-n}\left(R^{n-1}\left|u^{\prime}\right|^{\gamma-2} u^{\prime}\right)^{\prime} \geq c .
$$

Multiplying by R^{n-1} and integrating from 0 to R, we see that

$$
\begin{equation*}
\left|u^{\prime}(R)\right|^{\gamma-2} u^{\prime}(R) \leq-c R \quad \text { for } \quad R>0 \tag{3.2}
\end{equation*}
$$

Noting (i) of Lemma 2.1, we get $-u^{\prime}>0$ which implies

$$
\left|u^{\prime}(R)\right|^{\gamma-2} u^{\prime}(R)=-\left(-u^{\prime}(R)\right)^{\gamma-1} .
$$

Combining with (3.2) yields

$$
u^{\prime}(R) \leq-(c R)^{\frac{1}{\gamma-1}} \quad \text { for } \quad R>0 .
$$

Integrating from r_{0} to r, we get

$$
u(r) \leq u\left(r_{0}\right)-\frac{\gamma-1}{\gamma} c^{\frac{1}{\gamma-1}} r^{\frac{\gamma}{\gamma-1}} .
$$

When r is sufficiently large, u is negative. It is a contradiction.
Moreover, without loss of generality, we assume $u \leq v$. Then from (1.8) it follows that

$$
-\operatorname{div}\left(|\nabla u|^{\gamma-2} \nabla u\right) \geq u^{p+q} \quad \text { in } \quad \mathbb{R}^{n} .
$$

According to the Liouville type results in [13], we get $u \equiv 0$ in view of $p+q \leq$ $\frac{(n-1) \gamma}{n-\gamma}-1$.
(ii) We look for a solution such that $u=v+1$. Then system (1.8) becomes equivalent to the single equation

$$
\begin{equation*}
-\Delta_{\gamma} v=f(v)=(1+v)^{p} v^{q}, \quad x \in \mathbb{R}^{n} . \tag{3.3}
\end{equation*}
$$

Let $F(t)=\int_{0}^{t} f(\tau) d \tau$. We claim that

$$
\begin{equation*}
t f(t)-\frac{n \gamma}{n-\gamma} F(t) \geq 0, \quad t \geq 0 \tag{3.4}
\end{equation*}
$$

In fact, in view of (3.3) and integrating by parts, we have

$$
\begin{aligned}
F(t) & =\int_{0}^{t}(1+\tau)^{p} \tau^{q} d \tau \\
& =\frac{t^{q+1}(1+t)^{p}}{q+1}-\int_{0}^{t} \frac{\tau^{q+1}}{q+1} d\left((1+\tau)^{p}\right) \\
& =\frac{1}{q+1}\left[(1+t)^{p} t^{q+1}-\int_{0}^{t} p(1+\tau)^{p-1} \tau^{q+1} d \tau\right] \\
& \leq \frac{1}{q+1} t f(t)
\end{aligned}
$$

Since $q \geq \frac{n \gamma}{n-\gamma}-1$, we obtain

$$
t f(t) \geq(q+1) F(t) \geq \frac{n \gamma}{n-\gamma} F(t)
$$

Therefore, (3.4) is verified.
According to Lemma 3.1, we know the boundary value problem (3.1) does not admit any positive solution by noting (3.4).

Next, consider the following initial value problem

$$
\left\{\begin{array}{l}
-t^{1-n}\left(t^{n-1}\left|v^{\prime}\right|^{\gamma-2} v^{\prime}\right)^{\prime}=f(v), \quad t>0 \tag{3.5}\\
v(0)=1, v^{\prime}(0)=0
\end{array}\right.
$$

Clearly, one of the following two cases holds
Case 1: $v>0, v^{\prime} \leq 0$ for all $t>0$;
Case 2: v has the first zero R_{*}.
We claim that Case 2 does not happen, since this would contradict the above nonexistence statement on the ball $B_{R_{*}}$. We conclude that problem (3.5) and hence (3.3), admits a positive entire solution v which is decaying to zero. More precisely, according to the results in [6] and [7], v decays fast with the rate $\frac{n-\gamma}{\gamma-1}$ when $q=\frac{n \gamma}{n-\gamma}-1$ and slowly with rate $\frac{\gamma}{q-(\gamma-1)}$ when $q>\frac{n \gamma}{n-\gamma}-1$.
(iii) Let $(u, v)=\left(c w, c^{-1} w\right)$ with c a positive constant. Then system (1.8) becomes equivalent to

$$
-\Delta_{\gamma} w=w^{2 p-\gamma+1}
$$

According to the existence results in [13], we see that this equation admits positive solutions by virtue of $2 p-\gamma+1 \geq \frac{n \gamma}{n-\gamma}-1$.

References

[1] J. Bourgain, Global solutions of Nonlinear Schrödinger Equations, Amer. Math. Soc. Colloq. Publ. 46 AMS, Providence, RI, 1999.
[2] J. Byeon, L. Jeanjean, and M. Maris, Symmetry and monotonicity of least energy solutions, Calc. Var. PDEs 36 (2009), no. 4, 481-492.
[3] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
[4] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), no. 3, 615-622.
[5] , Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci. Ser. B Engl. Ed. 29 (2009), no. 4, 949-960.
[6] M. Franca, Classification of positive solutions of p-Laplace equation with a growth term, Arch. Math. (BRNO), 40 (2004), no. 4, 415-434.
[7] N. Kawano, E. Yanagida, and S. Yotsutani, Structure theorems for positive radial solutions to $\operatorname{div}\left(|D u|^{m-2} D u\right)+K(|x|) u^{q}=0$ in \mathbb{R}^{n}, J. Math. Soc. Japan 45 (1993), no. 4, 719-742.
[8] Y. Lei and C. Li, Integrability and asymptotics of positive solutions of a γ-Laplacian system, J. Differential Equations 252 (2012), no. 3, 2739-2758.
[9] Y. Lei, C. Li, and C. Ma, Decay estimation for positive solutions of a γ-Laplace equation, Discrete Contin. Dyn. Syst. 30 (2011), no. 2, 547-558.
[10] C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents, SIAM J. Math. Anal. 40 (2008), no. 3, 1049-1057.
[11] T. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in \mathbb{R}^{n}, $n \leq 3$, Commun. Math. Phys. 255 (2005), no. 3, 629-653.
[12] P. Quittner and Ph. Souplet, Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal. 44 (2012), no. 4, 2545-2559.
[13] J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math. 189 (2002), no. 1, 79-142.
[14] Ph. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math. 221 (2009), no. 5, 1409-1427.

Institute of Mathematics
School of Mathematical Sciences
Nanjing Normal University
Nanjing, 210023, P. R. China
E-mail address: 407650186@qq.com

[^0]: Received November 30, 2014; Revised July 12, 2015.
 2010 Mathematics Subject Classification. 35B08, 35J47, 35J6.
 Key words and phrases. γ-Laplacian system, components symmetry property, radial solution.

