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PROPERTIES OF POSITIVE SOLUTIONS FOR THE

FRACTIONAL LAPLACIAN SYSTEMS WITH

POSITIVE-NEGATIVE MIXED POWERS

Zhongxue Lü, Mengjia Niu, Yuanyuan Shen, and Anjie Yuan

Abstract. In this paper, by establishing the direct method of moving
planes for the fractional Laplacian system with positive-negative mixed

powers, we obtain the radial symmetry and monotonicity of the posi-

tive solutions for the fractional Laplacian systems with positive-negative
mixed powers in the whole space. We also give two special cases.

1. Introduction

The fractional power of Laplacian is the infinitesimal generator of Lévy
stable diffusion process and fractional nonlinear equations (systems) have been
applied to research physical phenomena, such as anomalous diffusion, quasi-
geostrophic flows, water waves, molecular dynamics, and relativistic quantum
mechanics of stars, probability and finance. For fractional order equations
(systems), we can see for example [1, 3, 4, 7, 14–17,19,20,28].

Symmetry and monotonicity for solutions play significant roles in under-
standing fractional nonlinear equations (systems). Many authors have studied
the symmetry and monotonicity of solutions for fractional nonlinear equations
(systems).

For the symmetry and monotonicity of solutions of fractional Laplacian equa-
tions (systems), several systematic methods are currently available to study
these properties, such as the moving plane method [10,11,13,22,24], the mov-
ing spherical method [12] and the sliding method [14, 26, 33]. Here we only
consider the moving plane method.

For the fractional p-Laplacian equations (systems) and the fully nonlinear
fractional order equations (systems), we can see for example [8, 27, 34, 36] and
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[9, 29, 31, 37], respectively. In what follows, we mainly consider the fractional
Laplacian systems.

Jarohs and Weth [18] established the direct method for the moving plane to
suitable only for bounded domain, W. Chen, C. Li and Y. Li [10] generalized the
direct method for the moving plane to unbounded domain by giving the narrow
domain lemma and infinite decay theorem for fractional Laplacian equation and
prove the symmetry and monotonicity of positive solutions for the fractional
Laplacian equation. Later Cao and Wang [6], Cheng, Lü and Lü [13], B. Liu
and L. Ma [23], Wang and Ren [30], Wu and Xu [35], and Zhuo, Chen, Cui
and Yuan [38] gave the symmetry, monotonicity and nonexistence of positive
solutions to fractional Laplacian equations (systems) with positive powers.

For fractional Laplacian equations with negative powers, Cai and Ma [5]
proved the symmetry of the positive solution of the fractional Laplacian equa-
tion with negative powers

(−∆)
α
2 u(x) + u−β(x) = 0, x ∈ Rn,

where α ∈ (0, 2), β > 0.
For fractional Laplacian equation with positive-negative mixed powers, Cao

and Wang [6] proved the symmetry or monotonicity of positive solutions to
nonlocal fractional Laplacian equation with a singular nonlinearity.

(−∆)su(x) = λuβ(x) + a0u
−γ(x), x ∈ Rn,

where 0 < s < 1, γ > 0, 1 < β ≤ n+2s
n−2s , λ > 0 are constants and a0 ≥ 0.

For the existence of fractional Laplacian equation with positive-negative
mixed powers, we can see for example Wang and Zhang [32], T. Mukherjee
and K. Sreenadh [25] in critical cases and J. Giacomoni, T. Mukherjee and K.
Sreenadh [17], B. Barrios, I. De Bonis, M. Medina and I. Peral [2] in subcritical
cases.

For the symmetry and monotonicity of solutions of fractional Laplacian sys-
tem with positive-negative mixed powers, as far as we know, we haven’t seen it
in the literature. We only see the symmetry of positive solutions to fractional
p-Laplacian systems in [21] by P. Le. But these results are similar to those of
positive indicators.

Inspired by these articles, we consider the following general fractional Lapla-
cian systems with positive-negative mixed powers in the whole space.

(−∆)su(x) = f(u(x), v(x)), x ∈ Rn,

(−∆)tv(x) = g(u(x), v(x)), x ∈ Rn,

u(x) > 0, v(x) > 0, x ∈ Rn,

(1.1)

with

(−∆)su(x) = Cn,s lim
ε→0

∫
Rn\Bε(x)

|u(x)− u(y)|
|x− y|n+2s

dy = Cn,sPV

∫
Rn

|u(x)− u(y)|
|x− y|n+2s

dy,



PROPERTIES OF POSITIVE SOLUTIONS 447

where Cn,s is a normalization positive constant depending on n, s and s ∈ (0, 1).
PV stands for the Cauchy principle value.

In order that the fractional Laplacian is well-defined, we require that

u ∈ C1,1
loc ∩ L2s, v ∈ C1,1

loc ∩ L2t

with

L2s =

{
u ∈ L1

loc(Rn)

∣∣∣∣ ∫
Rn

|u(x)|
1 + |x|n+2s

dx < +∞
}
,

L2t =

{
u ∈ L1

loc(Rn)

∣∣∣∣ ∫
Rn

|u(x)|
1 + |x|n+2t

dx < +∞
}
.

Our main results are as follows:

Theorem 1.1. Assume that u ∈ C1,1
loc (Rn) ∩ L2s(Rn), v ∈ C1,1

loc (Rn) ∩ L2t(Rn)
are positive solutions of (1.1) satisfying

(1.2) u(x) ∼ |x|m1 , v(x) ∼ |x|m2 as |x| sufficiently large,

with m1,m2 > 0, and f, g are continuous functions satisfying

(1.3)
fx(u, v) < 0, 0 < gx(u, v) ≤ C1u

r−1;

0 < fy(u, v) ≤ C2v
q−1, gy(u, v) < 0;

where Ci > 0, i = 1, 2, and C1 is independent of v, C2 is independent of u,
and q, r < 0 satisfying

(1.4) 2s < m2 −m2q, 2t < m1 −m1r.

Then u(x) and v(x) must be radially symmetric and monotone increasing about
some point in Rn.

Theorem 1.2. Assume that u ∈ C1,1
loc (Rn) ∩ L2s(Rn), v ∈ C1,1

loc (Rn) ∩ L2t(Rn)
are positive solutions of (1.1) satisfying

(1.5) u(x) ∼ |x|m1 , v(x) ∼ |x|m2 as |x| sufficiently large,

with m1,m2 > 0, and f, g are continuous functions satisfying

(1.6)
− C1u

p∗−1vq ≤ fx(u, v) < 0, 0 < gx(u, v) ≤ C2u
r−1vs

∗
;

0 < fy(u, v) ≤ C3u
p∗
vq−1, −C4u

rvs
∗−1 ≤ gy(u, v) < 0,

where Ci > 0, i = 1, 2, 3, 4 and p∗, s∗ < 0, 0 < q, r < 1 satisfying

(1.7) 2s < m2 −m1p−m2q
∗, 2t < m1 −m1r

∗ −m2s.

Then u(x) and v(x) must be radially symmetric and monotone increasing about
some point in Rn.

Remark 1. Regarding conditions (1.2) and (1.5), we are inspired by Theorem 1
and Remark 1 in [5]. Compared with the result of Cai and Ma [5], we generalize
condition 0 < m1,m2 < 1 to a more general case m1,m2 > 0.
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Remark 2. Conditions (1.4) and (1.7) are to make sure ‘Decay at infinity’. If
rewriting (1.4) as follows:

2s−m2 < −m2q, 2t−m1 < −m1r,

one can see that the right sides of the above two inequalities have the same
structure, namely, they are all the power of negative indicator.

If rewriting (1.7) as follows:

2s−m2 < −m1p
∗ −m2q, 2t−m1 < −m2s

∗ −m1r,

one can see that the right sides of the above two inequalities have the same
structure, namely, the power of negative indicator minus the power of positive
indicator.

Remark 3. Theorem 1.2 contrasts sharply with the case p = q = 2 of Theorems
1.2 and 1.4 in [21]. They are entirely different results.

By Theorem 1.1 and Theorem 1.2, we consider the following special cases of
(1.1):
System 1: 

(−∆)su(x) = u−p1(x) + vq1(x), x ∈ Rn,

(−∆)tv(x) = v−s1(x) + ur1(x), x ∈ Rn,

u(x) > 0, v(x) > 0, x ∈ Rn,

(1.8)

where p1, s1 > 0, 0 < q1, r1 < 1.
System 2: 

(−∆)su(x) = −up2(x)v−q2(x), x ∈ Rn,

(−∆)tv(x) = −vs2(x)u−r2(x), x ∈ Rn,

u(x) > 0, v(x) > 0, x ∈ Rn,

(1.9)

where p2, s2, q2, r2 > 0.
Specially, if we set u = v, System 2 will degenerate into fractional Laplacian

systems with negative powers similar to (1) in Cai and Ma [5].

Corollary 1.1. Assume that u ∈ C1,1
loc (Rn) ∩ L2s(Rn), v ∈ C1,1

loc (Rn) ∩ L2t(Rn)
are positive solutions of (1.8) satisfying

u(x) ∼ |x|m1 , v(x) ∼ |x|m2 as |x| sufficiently large,

with m1,m2 > 0, p1, s1 > 0, 0 < q1, r1 < 1, satisfying

2s < m2 −m2q1, 2t < m1 −m1r1.

Then u(x) and v(x) must be radially symmetric and monotone increasing about
some point in Rn.

Corollary 1.2. Assume that u ∈ C1,1
loc (Rn) ∩ L2s(Rn), v ∈ C1,1

loc (Rn) ∩ L2t(Rn)
are positive solutions of (1.9) satisfying

u(x) ∼ |x|m1 , v(x) ∼ |x|m2 as |x| sufficiently large,
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with m1,m2 > 0, p2, q2, s2, r2 > 0, satisfying

2s < m2 +m2q2 −m1p2, 2t < m1 +m1r2 −m2s2.

Then u(x) and v(x) must be radially symmetric and monotone increasing about
some point in Rn.

The paper is organized as follows. In Section 2, in order to prove Theorems
1.1-1.2, we establish the Decay at infinity and Boundary Estimate theorems. In
Section 3, we present the proofs of Theorems 1.1-1.2. Finally, we consider the
symmetry and monotonicity of the positive solutions to Systems 1-2 in Section
4.

2. Basic tools

In order to prove Theorems 1.1-1.2, we need following notations and some
lemmas:

Let Tλ = {x ∈ Rn |x1 = λ}, Σλ = {x ∈ Rn |x1 < λ}, xλ = (2λ −
x1, x2, . . . , xn), and

uλ(x) = u(xλ), vλ(x) = v(xλ), Uλ(x) = u(x)− u(xλ), Vλ(x) = v(x)− v(xλ).

Lemma 2.1. Let u ∈ C1,1
loc (Rn) ∩ L2s (Rn), v ∈ C1,1

loc (Rn) ∩ L2t (Rn) be
positive solutions of (1.1). If there are x̄, x̃ ∈ Σλ with λ ≤ 0 such that
Uλ(x̄) = minΣλ

Uλ(x) < 0, Vλ(x̃) = minΣλ
Vλ(x) < 0, then

(−∆)sUλ(x̄) ≤
C

|x̄|2s
Uλ(x̄); (−∆)sVλ(x̃) ≤

C

|x̃|2t
Vλ(x̃).

Proof. Assume that there exists a point x̄ ∈ Σλ such that

(2.1) Uλ(x̄) = min
Σλ

Uλ(x) < 0.

Then

(−∆)sUλ(x̄) = Cn,sPV

∫
Rn

Uλ(x̄)− Uλ(y)

|x̄− y|n+2s
dy

= Cn,sPV

∫
Σλ

Uλ(x̄)− Uλ(y)

|x̄− y|n+2s
dy + Cn,sPV

∫
Σλ

Uλ(x̄) + Uλ(y)

|x̄− yλ|n+2s
dy

= Cn,sPV

∫
Σλ

[
1

|x̄− y|n+2s
− 1

|x̄− yλ|n+2s
][Uλ(x̄)− Uλ(y)]dy(2.2)

+ Cn,sPV

∫
Σλ

2Uλ(x̄)

|x̄− yλ|n+2s
dy

= Cn,s{I1 + I2}.

For I1, from (2.1) and the fact that 1
|x̄−y| > 1

|x̄−yλ| for any x̄, y ∈ Σλ, one
can get

(2.3) I1 < 0.
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Because Bλ
|x̄|(x̃) ⊂ Rn\Σλ for each fixed λ < 0, where B̄λ

|x̄|(x̃) ⊂ Σλ is

the reflection of B|x̄|(x̃) about the plane Tλ with x̃ = (3|x̄| + x̄1, (x̄)
′), here

(x̄)′ = (x̄2, x̄3, . . . , x̄n), then

(2.4)

I2 = Cn,sPV

∫
Σλ

2Uλ(x̄)

|x̄− yλ|n+2s
dy

≤ Cn,sUλ(x̄)PV

∫
B̄λ

|x̄|(x̃)

1

|x̄− yλ|n+2s
dy

≤ Cn,sUλ(x̄)PV

∫
B̄λ

|x̄|(x̃)

1

4n+2s|x̄|n+2s
dy

≤ C1

|x̄|2s
Uλ(x̄).

Combining (2.2), (2.3) and (2.4), one has

(2.5) (−∆)sUλ(x̄) ≤
C1

|x̄|2s
Uλ(x̄).

Similarly, one can prove

(−∆)sVλ(x̃) ≤
C

|x̃|2t
Vλ(x̃).

□

Lemma 2.2 (Decay at infinity I). Let u ∈ C1,1
loc (Rn)∩L2s (Rn), v ∈ C1,1

loc (Rn)∩
L2t (Rn) be positive solutions of (1.1). Assume that (1.5)-(1.7) hold. Then,
there exists a sufficiently large constant R0 > 0,

(a) if there is x̄ ∈ Σλ with λ ≤ 0, |x̄| > R0 such that Uλ(x̄) = minΣλ
Uλ(x) <

0, then

Vλ(x̄) < 2Uλ(x̄) < 0;

(b) if there is x̃ ∈ Σλ with λ ≤ 0, |x̃| > R0 such that Vλ(x̃) = minΣλ
Vλ(x) <

0, then

Uλ(x̃) < 2Vλ(x̃) < 0.

Lemma 2.3 (Decay at infinity II). Let u ∈ C1,1
loc (Rn) ∩ L2s(Rn), v ∈ C1,1

loc (Rn)∩
L2t(Rn) be positive solutions of (1.1). Assume that (1.2)-(1.4) hold. Then, there
exists a sufficiently large constant R0 > 0,

(a) if there is x̄ ∈ Σλ with λ ≤ 0, |x̄| > R0 such that Uλ(x̄) = minΣλ
Uλ(x) <

0, then

Vλ(x̄) < 2Uλ(x̄) < 0;

(b) if there is x̃ ∈ Σλ with λ ≤ 0, |x̃| > R0 such that Vλ(x̃) = minΣλ
Vλ(x) <

0, then

Uλ(x̃) < 2Vλ(x̃) < 0.

Proof of Lemma 2.2. Assume that there exists a point x̄ ∈ Σλ such that

(2.6) Uλ(x̄) = min
Σλ

Uλ(x) < 0.
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From Lemma 2.1, one has

(2.7) (−∆)sUλ(x̄) ≤
C1

|x̄|2s
Uλ(x̄).

Moreover, applying the mean value theorem yields

(2.8)
(−∆)sUλ(x̄) = f(u(x̄), v(x̄))− f(uλ(x̄), vλ(x̄))

= fx(ξλ(x̄), vλ(x̄))Uλ(x̄) + fy(u(x̄), ηλ(x̄))Vλ(x̄),

where ξλ(x̄) is valued between u(x̄) and uλ(x̄), and ηλ(x̄) is valued between
v(x̄) and vλ(x̄).

Combining (2.7) and (2.8), one also get

(2.9) fy(u(x̄), ηλ(x̄))Vλ(x̄) ≤ [
c1

|x̄|2s
− fx(ξλ(x̄), vλ(x̄))]Uλ(x̄).

From (2.9) and the assumption (1.6), it follows that

(2.10) Vλ(x̄) < 0.

Conclusion (a) will be proved if we show
c1

|x̄|2s
−fx(ξλ(x̄),vλ(x̄))

fy(u(x̄),ηλ(x̄))
> 2 for suffi-

ciently large |x̄|.
In fact, from Uλ(x̄) < 0, Vλ(x̄) < 0, then u(x̄) < ξλ(x̄) < uλ(x̄), v(x̄) <

ηλ(x̄) < vλ(x̄).
Hence by (1.7) and (1.6), it follows that for sufficiently large |x̄|,

(2.11)

c1
|x̄|2s − fx(ξλ(x̄), vλ(x̄))

fy(u(x̄), ηλ(x̄))
≥ c|x̄|−m1p−m2(q

∗−1)−2s > 2.

Then conclusion (a) holds.
By the same token, we can give the proof of (b), which will omit it here.

This completes the proof of Lemma 2.2. □

Similar to the proof of Lemma 2.2, we can prove Lemma 2.3. We omit it
here.

Lemma 2.4 (Boundary Estimate). Assume that Uλ0
(x) > 0, x ∈ Σλ0

. Sup-
pose λk ↘ λ0 and xk ∈ Σλk

such that

Uλk
(xk) = min

Σλk

Uλk
(x) ≤ 0 and xk → x0∈ ∂Σλ0

,

let δk = dist(xk, ∂Σλk
) ≡ |λk − xk

1 |. Then

(2.12) lim
δk→0

(−∆)sUλk
(xk)

δk
< 0.
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Proof. Similar to (2.2), we derive that

(2.13)

(−∆)sUλk
(xk)

δk

=
Cn,s

δk
PV

∫
Σλk

[
1

|xk − y|n+2s
− 1

|xk − yλk |n+2s
][Uλk

(xk)− Uλk
(y)]dy

+
2Uλk

(xk)

δk
Cn,sPV

∫
Σλk

1

|xk − yλk |n+2s
dy

= Cn,s{I1k + I2k}.

Obviously,

(2.14) I2k ≤ 0.

Next, we estimate I1k. Applying the mean value theorem yields

(2.15)

1

δk

[
1

|xk − y|n+2s
− 1

|xk − yλk |n+2s

]
=

1

δk

[
− n+ 2s

2ηk(y)n+2s+2

]
(|xk − y|2 − |xk − yλk |2)

=
1

δk

[
− n+ 2s

2ηk(y)n+2s+2

]
(−4)(y1 − λk)(x

k
1 − λk)

=
2(n+ 2s)(λk − y1)

ηk(y)n+2s+2

→ 2(n+ 2s)(λ0 − y1)

η0(y)n+2s+2
as k → ∞,

here |xk − y| ≤ ηk(y) ≤ |xk − yλk |, |x0 − y| ≤ η0(y) ≤ |x0 − yλ0 |, and ηk(y) =
|xk − y|+ θ(|xk − yλk | − |xk − y|), η0(y) = |x0 − y|+ θ(|x0 − yλ0 | − |x0 − y|).

Obviously, the last term in (2.15) is strictly positive in Σλ0 (it may be +∞
at some point y). Therefore, by the fact that Uλk

(xk) − Uλ0(y) ≤ 0 for all
y ∈ Σλ0

, one can get

(2.16) lim
k→∞

I1k < 0.

Combining (2.13), (2.14) and (2.16), we arrive at (2.12).
This completes the proof of Lemma 2.4. □

Lemma 2.5. Assume Uλ0
(x) ≥ 0, Vλ0

(x) ≥ 0, x ∈ Σλ0
, if Uλ0

(x) ̸≡ 0 or
Vλ0

(x) ̸≡ 0, x ∈ Σλ0
. Then Uλ0

(x) > 0 and Vλ0
(x) > 0, x ∈ Σλ0

.

Remark 4. According to the definition of fractional Laplacian and assumption
(1.3) or (1.6), one can easily get if Uλ0

(x) ≡ 0, then Vλ0
(x) ≡ 0. If Vλ0

(x) ≡ 0,
then Uλ0

(x) ≡ 0.
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Proof of Lemma 2.5. Without loss of generality, we assume that Uλ0
(x) ̸≡ 0,

x ∈ Σλ0
. If not, then there exists a point x0 ∈ Σλ0

such that

(2.17) Uλ0
(x0) = 0.

On one hand, according to the definition of fractional Laplacian, one has

(2.18)

(−∆)sUλ0
(x0)

= Cn,sPV

∫
Σλ0

[
1

|x0 − y|n+2s
− 1

|x0 − yλ0 |n+2s
][Uλ0

(x0)− Uλ0
(y)]dy

+ Cn,sPV

∫
Σλ0

2Uλ0(x
0)

|x0 − yλ0 |n+2s
dy

= Cn,s{I1 + I2}.
Obviously,

I2 = Cn,sPV

∫
Σλ0

2Uλ0
(x0)

|x0 − yλ0 |n+2s
dy = 0.(2.19)

For I1, one has Uλ0
(x0) − Uλ0

(y) ≤ 0, but ̸≡ 0 for y ∈ Σλ0
. And from the

fact that 1
|x0−y| >

1
|x0−yλ0 | , x

0, y ∈ Σλ0
, one can get

(2.20) I1 < 0.

Combining (2.18), (2.19) and (2.20), we deduce that

(−∆)sUλ0
(x0) = Cn,s{I1 + I2} < 0.

On the other hand, similar to (2.8), one has

(−∆)sUλ0
(x0) = fx(ξλ0

(x0), v(x0))Uλ0
(x0) + fy(uλ0

(x0), ηλ0
(x0))Vλ0

(x0) ≥ 0.

This contradiction shows that

(2.21) Uλ0
(x) > 0, x ∈ Σλ0

.

According to (2.21) and Remark 4, repeating the above process, we can
easily get Vλ0

(x) > 0, x ∈ Σλ0
. Therefore, we complete the proof of Lemma

2.5. □

3. Symmetry and monotonicity in Rn

Proof of Theorem 1.1. Let xλ, uλ(x), vλ(x), Uλ(x), Vλ(x), Tλ, Σλ as defined
in Section 2.

Recall Uλ(x) ∼ |x|m1 − |xλ|m1 , |x| > |xλ| for |x| large, we can easily show
that for x ∈ Σλ, λ ≤ 0,

(3.1) lim
|x|→∞

Uλ(x) ≥ 0, lim
|x|→∞

Vλ(x) ≥ 0.

It implies that if Uλ(x), Vλ(x) are negative somewhere in Σλ, then the negative
minimum of Uλ(x), Vλ(x) must be attained in the interior of Σλ.

In the following, by employing the method of moving planes, we carry out
the proof in two steps.
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Step 1. We show that for λ sufficiently negative,

(3.2) Uλ(x), Vλ(x) ≥ 0, x ∈ Σλ.

Choose λ < −R0, where R0 is given by Lemma 2.3. It follows that Uλ(x) ≥ 0
and Vλ(x) ≥ 0 in Σλ for all λ < −R0.

Assume for contradiction that there exist a λ < −R0 and a point x̄ ∈ Σλ

such that Uλ(x̄) < 0. Without loss of generality, we assume

Uλ(x̄) = min
Σλ

Uλ(x) < 0.

Since λ < −R0, we know that |x̄| > R0. Then by Lemma 2.3,

(3.3) Vλ(x̄) < 2Uλ(x̄) < 0.

According to (3.1), there exists a point x̃ ∈ Σλ such that

Vλ(x̃) = min
Σλ

Vλ(x) < 0.

In view of |x̃| > R0, it follows from Lemma 2.3 that

(3.4) Uλ(x̃) < 2Vλ(x̃) < 0.

Combining (3.3) and (3.4), one can get

Vλ(x̄) < 2Uλ(x̄) ≤ 2Uλ(x̃) ≤ 4Vλ(x̃) < 4Vλ(x̄).

This is a contradiction for Vλ(x̄) < 0. This completes Step 1.
Step 2. Step 1 provides a starting point to move the plane Tλ. Now we

keep moving the plane to the limiting position Tλ0 as long as (3.2) holds to its
limiting position. More precisely, define

λ0 = sup{λ ≤ 0 |Uµ(x), Vµ(x) ≥ 0, x ∈ Σµ, µ ≤ λ}.
Now we want to prove u and v are symmetric about the limiting plane Tλ0 ,

or

(3.5) Uλ0
(x) ≡ 0, Vλ0

(x) ≡ 0, x ∈ Σλ0
.

If (3.5) is false, then Uλ0(x) ̸≡ 0 or Vλ0(x) ̸≡ 0, x ∈ Σλ0 . Furthermore,
through Lemma 2.5 and Remark 4, we derive that

(3.6) Uλ0
(x) > 0, Vλ0

(x) > 0, x ∈ Σλ0
.

By the definition of λ0, there exist a sequence λk ↘ λ0 and xk ∈ Σλk
such

that either Uλk
(xk) < 0 or Vλk

(xk) < 0. Without loss of generality, assume
that Uλk

(xk) < 0 and regard xk as its minimum point, then

(3.7) Uλk
(xk) = min

Σλk

Uλk
(x) < 0, ∇Uλk

(xk) = 0,

and

(3.8)
(−∆)sUλk

(xk)

= fx(ξλk
(xk), v(xk))Uλk

(xk) + fy(uλk
(xk), ηλk

(xk))Vλk
(xk).

For the sequence {xk}∞k=1, there are two possible cases:



PROPERTIES OF POSITIVE SOLUTIONS 455

Case 1. The sequence {xk}∞k=1 contains a bounded subsequence. Then
there exists a subsequence of {xk} (for convenience, we still denote {xk}) that
converges to some point x0, i.e., limk→∞ xk = x0.

Dividing both sides of (3.8) by δk = |λk − xk
1 | = λk − xk

1 , we derive that

(3.9)

lim
k→∞

(−∆)sUλk
(xk)

δk

= lim
k→∞

fx(ξλk
(xk), v(xk))Uλk

(xk) + fy(uλk
(xk), ηλk

(xk))Vλk
(xk)

δk
.

Noticing that fx(ξλk
(xk), v(xk)) < 0, Uλk

(xk) < 0, δk > 0, and hence

(3.10) lim
k→∞

fx(ξλk
(xk), v(xk))Uλk

(xk)

δk
≥ 0.

Furthermore, one can obtain

lim
k→∞

Vλk
(xk)

δk
= lim

k→∞

∂v
∂x1

(ζk, (xk)′) · 2(xk
1 − λk)

λk − xk
1

= −2
∂v

∂x1
(x0),(3.11)

here ζk is valued between xk
1 and 2λk − xk

1 .

Since Vλ0
(x) > 0 if x ∈ Σλ0

and Vλ0
(x) = 0 if x ∈ Tλ0

, then
∂Vλ0

∂x1
(x0) ≤ 0.

It implies that

(3.12) 0 ≥ ∂Vλ0

∂x1
(x0) =

∂v

∂x1
(x0

1, (x
0)′) +

∂v

∂x1
(2λ0 − x0

1, (x
0)′) = 2

∂v

∂x1
(x0).

Combining (1.3), (3.9)-(3.12), one has

lim
k→∞

(−∆)sUλk
(xk)

δk
≥ 0,

which contradicts with Lemma 2.4. Thus, Uλ0
(x) ≡ 0, Vλ0

(x) ≡ 0, x ∈ Σλ0
.

Case 2. The sequence {xk}∞k=1 is an unbounded subsequence. We can
express it as limk→∞ |xk| = ∞. Namely, for sufficiently large R0 > 0, there
exists N1 > 0 such that for all k > N1, |xk| > R0.

Then by Lemma 2.3 and (3.7), for any k > N1,

(3.13) Vλk
(xk) < 2Uλk

(xk) < 0.

Hence, for any k > N1, there exists yk ∈ Σλk
such that

(3.14) Vλk
(yk) = min

Σλk

Vλk
(y) < 0.

For the sequence {yk}∞k=1, there are two possible cases:
Case 2.1. The sequence {yk}∞k=1 contains a bounded subsequence. Repeating
the process of Case 1, we can get the conclusion.
Case 2.2. The sequence {yk}∞k=1 is an unbounded subsequence. We can
express it as limk→∞ |yk| = ∞. Namely, for sufficiently large R0 > 0, there
exists N2 > 0 such that for all k > N2, |yk| > R0.
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Then by Lemma 2.3 and (3.14), for k > N2, one has

(3.15) Uλk
(yk) < 2Vλk

(yk) < 0.

Hence, from (3.13) and (3.15), for any k > N = max{N1, N2}, one can get

Uλk
(yk) < 2Vλk

(yk) ≤ 2Vλk
(xk) < 4Uλk

(xk) ≤ 4Uλk
(yk).

This contradicts with Uλk
(yk) < 0, and finishes the proof of Step 2.

Since the x1 direction can be chosen arbitrarily, we actually indicate that
u(x) and v(x) are radically symmetric about some point x0. Also, the mono-
tonicity of solutions follows easily from the argument.

Thus, this completes the proof of Theorem 1.1. □

Proof of Theorem 1.2. Similar to the proof of Theorem 1.1, we can prove The-
orem 1.2 by using Lemmas 2.1, 2.2, 2.4-2.5. Here we omit it. □

4. Application to the Laplacian system

Proof of Corollary 1.1. Let

f(u(x), v(x)) = u−p1(x) + vq1(x),

g(u(x), v(x)) = v−s1(x) + ur1(x),

and

q = q1, r = r1.

One can easily conclude that f and g satisfy (1.3). Then all conditions of
Theorem 1.1 are satisfied. So by Theorem 1.1, u(x) and v(x) must be radially
symmetric and monotone increasing about some point in Rn. □

Proof of Corollary 1.2. Let

f(u(x), v(x)) = −up2(x)v−q2(x), g(u(x), v(x)) = −vs2(x)u−r2(x),

and

p = p2, q∗ = −q2, r∗ = −r2, s = s2.

One can easily conclude that f and g satisfy (1.6). Then all conditions of
Theorem 1.2 are satisfied. So by Theorem 1.2, u(x) and v(x) must be radially
symmetric and monotone increasing about some point in Rn. □
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[3] C. Brändle, E. Colorado, A. de Pablo, and U. Sánchez, A concave-convex elliptic problem
involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), no. 1,

39–71. https://doi.org/10.1017/S0308210511000175

[4] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,
Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245–1260. https://doi.org/

10.1080/03605300600987306

[5] M. Cai and L. Ma, Moving planes for nonlinear fractional Laplacian equation with
negative powers, Discrete Contin. Dyn. Syst. 38 (2018), no. 9, 4603–4615. https://doi.

org/10.3934/dcds.2018201

[6] L. Cao and X. Wang, Radial symmetry of positive solutions to a class of fractional

Laplacian with a singular nonlinearity, J. Korean Math. Soc. 58 (2021), no. 6, 1449–

1460. https://doi.org/10.4134/JKMS.j210091
[7] W. Chen, Y. Fang, and R. Yang, Liouville theorems involving the fractional Laplacian

on a half space, Adv. Math. 274 (2015), 167–198. https://doi.org/10.1016/j.aim.

2014.12.013

[8] W. Chen and C. Li, Maximum principles for the fractional p-Laplacian and symmetry

of solutions, Adv. Math. 335 (2018), 735–758. https://doi.org/10.1016/j.aim.2018.

07.016

[9] W. Chen, C. Li, and G. Li, Maximum principles for a fully nonlinear fractional order

equation and symmetry of solutions, Calc. Var. Partial Differential Equations 56 (2017),

no. 2, Paper No. 29, 18 pp. https://doi.org/10.1007/s00526-017-1110-3
[10] W. Chen, C. Li, and Y. Li, A direct method of moving planes for the fractional Laplacian,

Adv. Math. 308 (2017), 404–437. https://doi.org/10.1016/j.aim.2016.11.038
[11] W. Chen, Y. Li, and P. Ma, The Fractional Laplacian, World Sci. Publ., Hackensack,

NJ, 2020. https://doi.org/10.1142/10550

[12] W. Chen, Y. Li, and R. Zhang, A direct method of moving spheres on fractional order
equations, J. Funct. Anal. 272 (2017), no. 10, 4131–4157. https://doi.org/10.1016/j.

jfa.2017.02.022
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