• 제목/요약/키워드: Radial Basis Function Neural Network

검색결과 237건 처리시간 0.027초

Predicting strength development of RMSM using ultrasonic pulse velocity and artificial neural network

  • Sheen, Nain Y.;Huang, Jeng L.;Le, Hien D.
    • Computers and Concrete
    • /
    • 제12권6호
    • /
    • pp.785-802
    • /
    • 2013
  • Ready-mixed soil material, known as a kind of controlled low-strength material, is a new way of soil cement combination. It can be used as backfill materials. In this paper, artificial neural network and nonlinear regression approach were applied to predict the compressive strength of ready-mixed soil material containing Portland cement, slag, sand, and soil in mixture. The data used for analyzing were obtained from our testing program. In the experiment, we carried out a mix design with three proportions of sand to soil (e.g., 6:4, 5:5, and 4:6). In addition, blast furnace slag partially replaced cement to improve workability, whereas the water-to-binder ratio was fixed. Testing was conducted on samples to estimate its engineering properties as per ASTM such as flowability, strength, and pulse velocity. Based on testing data, the empirical pulse velocity-strength correlation was established by regression method. Next, three topologies of neural network were developed to predict the strength, namely ANN-I, ANN-II, and ANN-III. The first two models are back-propagation feed-forward networks, and the other one is radial basis neural network. The results show that the compressive strength of ready-mixed soil material can be well-predicted from neural networks. Among all currently proposed neural network models, the ANN-I gives the best prediction because it is closest to the actual strength. Moreover, considering combination of pulse velocity and other factors, viz. curing time, and material contents in mixture, the proposed neural networks offer better evaluation than interpolated from pulse velocity only.

Tracking Control for Robot Manipulators based on Radial Basis Function Networks

  • Lee, Min-Jung;Park, Jin-Hyun;Jun, Hyang-Sig;Gahng, Myoung-Ho;Choi, Young-Kiu
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.285-288
    • /
    • 2005
  • 신경회로망은 지능제어알고리즘 중의 하나로 학습능력을 가지고 있다. 이러한 학습능력 때문에 많은 분야에서 널리 사용되고 있으나, 지능제어의 단점인 안정도 문제를 수학적으로 증명하기 어렵다는 문제점을 갖고 있다. 본 논문에서는 신경회로망의 한 종류인 RBFN과 적응제어기법을 이용하여 로봇 매니퓰레이터 궤적 제어기를 구성하고 자 한다. 본 논문에서는 RBFN의 파라메터들을 적응제어기법을 이용하여 수학적으로 구하였고, 시스템의 안정도를 수학적으로 UUB를 만족한다는 것을 증명하였다. 그리고 수평다관절로봇 매니퓰레이터 궤적제어기에 적용하였다.

  • PDF

동적 비선형 신호의 온라인 모델링

  • 한정희;왕지남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.371-376
    • /
    • 1994
  • This paper presents an on-line modeling method approach for the machine condition. the machine condition is continuously monitored with a sensor such as, a vibration, a current, an acoustic emission (AE) sensor. In this study, neural network modeling by radial basis function is designed for analysis a prediction error. An on-line learning algorithm is designed using the RLS(recursive least square) estimation and the existing clustering method of Kohonen neural network. Experimental results show that the proposed RBNN modeling is suitable for predicting simulated data.

  • PDF

투영신경회로망의 훈련을 위한 진화학습기법 (Evolutionary Learning Algorithm fo r Projection Neural NEtworks)

  • 황민웅;최진영
    • 한국지능시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.74-81
    • /
    • 1997
  • 본 논문에서는 시그모이드 함수와 방사형 기저 함수 모두를 생성시킬 수 있는 특별한 은닉층 노드를 갖는 투영신경회로망에 대하여 알아롭고 그것을 훈련시키기 위한 진화 학습 기법을 제시한다. 제시된 기법은 신경회로망의 매개변수와 연결 가충치뿐만 아니라, 어떤 목적함수를 나타내기 위한 최적의 은닉층 노드개수 또한 구조 최적화를 위한 진화연산자를 통해 찾아낸다. 각각의 은닉층 노드의 역할은 진화를 거듭하면서 방사형 기저 함수를 나타낼지 시그모이드 함수를 나타낼지 결정된다. 알고리즘을 구현하기 위해서 투영신경회로망은 연결 고리 리스트 자료구조로 나타내었다. 모의 실험에서 기존으 오차역전파에 의한 학습과 구조 성장 방식보다 적은 노드로 투영신경회로망을 훈련시킬 수 있음을 볼수 있다.

  • PDF

Backstepping Sliding Mode-based Model-free Control of Electro-hydraulic Systems

  • Truong, Hoai-Vu-Anh;Trinh, Hoai-An;Ahn, Kyoung-Kwan
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권1호
    • /
    • pp.51-61
    • /
    • 2022
  • This paper presents a model-free system based on a framework of a backstepping sliding mode control (BSMC) with a radial basis function neural network (RBFNN) and adaptive mechanism for electro-hydraulic systems (EHSs). First, an EHS mathematical model was dedicatedly derived to understand the system behavior. Based on the system structure, BSMC was employed to satisfy the output performance. Due to the highly nonlinear characteristics and the presence of parametric uncertainties, a model-free approximator based on an RBFNN was developed to compensate for the EHS dynamics, thus addressing the difficulty in the requirement of system information. Adaptive laws based on the actor-critic neural network (ACNN) were implemented to suppress the existing error in the approximation and satisfy system qualification. The stability of the closed-loop system was theoretically proven by the Lyapunov function. To evaluate the effectiveness of the proposed algorithm, proportional-integrated-derivative (PID) and improved PID with ACNN (ACPID), which are considered two complete model-free methods, and adaptive backstepping sliding mode control, considered an ideal model-based method with the same adaptive laws, were used as two benchmark control strategies in a comparative simulation. The simulated results validated the superiority of the proposed algorithm in achieving nearly the same performance as the ideal adaptive BSMC.

An On-Line Adaptive Control of Underwater Vehicles Using Neural Network

  • Kim, Myung-Hyun;Kang, Sung-Won;Lee, Jae-Myung
    • 한국해양공학회지
    • /
    • 제18권2호
    • /
    • pp.33-38
    • /
    • 2004
  • All adaptive neural network controller has been developed for a model of an underwater vehicle. This controller combines a radial basis neural network and sliding mode control techniques. No prior off-line training phase is required, and this scheme exploits the advantages of both neural network control and sliding mode control. An on-line stable adaptive law is derived using Lyapunov theory. The number of neurons and the width of Gaussian function should be chosen carefully. Performance of the controller is demonstrated through computer simulation.

신경망을 이용한 전력품질 진단시스템 (A Power Quality monitoring system using Neural Network)

  • 김흥균;이진목;최재호;이상훈;김재식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.202-204
    • /
    • 2004
  • This paper presents a neural network technology for the detection and classification of the various types of power quality disturbances. Power quality phenomena are short-time problems and of many varieties. Particularly, the transients happen during very short durations to the nano- and microsecond. Thus, a method for detecting ·md classifying transient signals at the same time and in an automatic combines the properties of the wavelet transform and the advantages of neural networks. We test two neural network and compare the results of Backpropagation Neural (BPN) network with Radial basis function network (RBFN). RBFN is more useful to detect and classify than BPN. The configuration of the hardware of PQ-DAS and some case studies are described.

  • PDF

라만분광법에 의한 흑색 플라스틱 선별을 위한 퍼지 클러스터링기반 신경회로망 분류기 설계 (Design of Fuzzy Clustering-based Neural Networks Classifier for Sorting Black Plastics with the Aid of Raman Spectroscopy)

  • 김은후;배종수;오성권
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1131-1140
    • /
    • 2017
  • This study is concerned with a design methodology of optimized fuzzy clustering-based neural network classifier for classifying black plastic. Since the amount of waste plastic is increased every year, the technique for recycling waste plastic is getting more attention. The proposed classifier is on a basis of architecture of radial basis function neural network. The hidden layer of the proposed classifier is composed to FCM clustering instead of activation functions, while connection weights are formed as the linear functions and their coefficients are estimated by the local least squares estimator (LLSE)-based learning. Because the raw dataset collected from Raman spectroscopy include high-dimensional variables over about three thousands, principal component analysis(PCA) is applied for the dimensional reduction. In addition, artificial bee colony(ABC), which is one of the evolutionary algorithm, is used in order to identify the architecture and parameters of the proposed network. In experiment, the proposed classifier sorts the three kinds of plastics which is the most largely discharged in the real world. The effectiveness of the proposed classifier is proved through a comparison of performance between dataset obtained from chemical analysis and entire dataset extracted directly from Raman spectroscopy.

Artificial Neural Network Models in Prediction of the Moisture Content of a Spray Drying Process

  • Taylan, Osman;Haydar, Ali
    • 한국세라믹학회지
    • /
    • 제41권5호
    • /
    • pp.353-358
    • /
    • 2004
  • Spray drying is a unique drying process for powder production. Spray dried product must be free-flowing in order to fill the pressing dies rapidly, especially in the ceramic production. The important powder characteristics are; the particle size distribu-tion and moisture content of the finished product that can be estimated and adjusted by the spray dryer operation, within limits, through regulation of atomizer and drying conditions. In order to estimate the moisture content of the resultant dried product, we modeled the control system of the drying process using two different Artificial Neural Network (ANN) approaches, namely the Back-Propagation Multiplayer Perceptron (BPMLP) algorithm and the Radial Basis Function (RBF) network. It was found out that the performance of both of the artificial neural network models were quite significant and the total testing error for the 100 data was 0.8 and 0.7 for the BPMLP algorithm and the RBF network respectively.

주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계 (Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis)

  • 김욱동;오성권
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.735-740
    • /
    • 2012
  • 본 연구에서는 주성분 분석법 및 선형 판별 분석법을 이용한 다항식 방사형 기저 함수 신경회로망 분류기의 설계 방법론을 소개한다. 주성분 분석법과 선형판별 분석법을 사용하여 주어진 데이터의 정보 손실을 최소화한 특징데이터를 생성하고 이를 다항식 방사형 기저함수 신경회로망의 입력데이터로 사용한다. 방사형 기저 함수 신경회로망의 은닉층은 FCM 클러스터링 알고리즘으로 구성되며 연결가중치는 1차 선형식을 사용하였다. 최적의 분류기 설계를 위해서 최근에 제안된 Artificial Bee Colony(ABC) 최적화 알고리즘을 사용하여 구조 및 파라미터를 동조하였다. ABC 알고리즘을 통해 주성분 분석법과 선형판별 분석법의 고유벡터의 수 및 FCM 클러스터링 알고리즘의 퍼지화 계수등의 파라미터를 동조한다. 제안된 분류기는 대표적인 Machine Learning(ML) 데이터를 사용하여 성능을 평가하며 기존 분류기와 성능을 비교한다.