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ABSTRACT

Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various
their applications from intelligent control fields; however, their applications have limits from the point that the
stability of the intelligent control systems is not usually guaranteed. In this paper we propose a neuro-adaptive
controller for robot manipulators using the radial basis function network(RBFN) that is a kind of a neural network.
Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the
stability of the overall control scheme. Filtered tracking errors between the actual outputs and desired outputs are
discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that the
parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the
proposed neuro-adaptive controller is adaptable to the environment changes and is more robust than the conventional
PID controller and the neuro-controller based on the multilayer perceptron.
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suffer from poor performance and robustness
due to unknown nonlinearities and external
disturbances. For some decades, to deal with
unknown nonlinearities and external
disturbances, a lot of researches have been
pursued to find various control strategies such
as automatic tuning of PID control, variable

|. Indtroduction

Robot manipulators used as industrial automatic
elements are systems with highly nonlinear
dynamics that are often unknown. Conventional
feedback controllers such as PID controllers are
commonly used in the field of industry since

their control architectures are very simple and
easy to implement; however, when these
conventional feedback controllers are directly
applied to the robot manipulators, they may

structure control, feedback linearization, model
reference adaptive control, direct adaptive
control, intelligent control, etc. {1]-[4].

This paper proposes another neuro-adaptive
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controller based on the RBFN. It deals with
tracking control problems for robot manipulators
that are multi-input-multi-output systems. The
proposed controller has a parallel structure that
consists of a fixed gain PD controller and a RBFN
controller. The PD controller is used to control the
robot manipulator during the initial learning stage
of the RBFN. The role of the PD controller is
reduced after the learning stage of the RBFN.
On-line adaptive laws are derived to adjust the
weights and both of centers and widths of the
RBFN and are constructed to guarantee the
stability of the total control system on the basis of
the Lyapunov stability theory.

Finally, the proposed neuro-adaptive control
scheme is applied to a SCARA-type robot
manipulator. We can find experimentally the
validity of the neuro-adaptive control scheme by
comparing with other control strategies.

Il. Dynamics and Structural Properties

For control design purpose, it is necessary to
have a mathematical model that reveals the
dynamical behavior of a system.

Using the Euler-Lagrangian formulation, the
equations of motion of an n-link manipulator can
be written as [1]

D(g)a+Clga+Glg) +7 =7 )

where ¢ER"is the joint position, D{@ €R"*™is

the inertial matrix, C(q,é)dER“represents the

Coriolis/centrifugal torque, G{(q)ER™ is the

gravitational torque, 7,€R" is the disturbance
torque, and 7ER" is the applied joint torque.

The dynamics of robot manipulator in the form
of (1) is characterized by the following structural
properties.

Property 1: The inertial matrix D(q) is
symmetric and positive definite, and there exist
scalars, m, and m, such that m 1< D(q) < m,l.

Property 2: The Coriolis/centrifugal torque
Clqq)q is bounded by ¢(a) Ial® with ¢(@EC!(S).5
is a simply connected compact set of R™

Property 3: The matrix Di@-2C(qe) is
skew-symmetric. That is, the matrix is satisfied
with x*{D{q) —2C(q@) x=0 for ¥xER" .

Property 4: The unknown disturbance satisfies

Ji7; | <b with a known positive constantb,.

Property 5: There exists a vector §&R" with
components that depend on the manipulator
parameters (masses, moments of inertia, etc.) such

that
D(q)g+C(aa)+Gla) =Y(aqa)d =7 (2)
where Y (qq,q) €R™*"is the regressor which is a
function of time.
These properties are well known and generally
used to design adaptive controllers.

Ill. Radial Basis Function Networks

The RBEN proposed by Moody, Darken, Powell,
Broomhead and Lowe is used to approximate
nonlinear functions and has faster convergence
time than the multi-layer perceptron. RBFN also
has similar feature to fuzzy inference system (FIS).
That is, the output value is calculated using the
weighted sum or weighted average method, the
number of hidden layer’s node of RBFN is the same
as the number of if-then rules in FIS, and the radial
basis functions are similar to the membership
functions of FIS" premise part [4]. Fig. 1 shows the
structure of RBFN with Mhidden nodes. RBEN
consists of hidden layer and output layer. The
number of hidden layers are determined by
designer. Gaussian function, triangular function
and trapezoidal function are usually employed as
basis functions of RBFN.

Hidden Output

Input
layer layer layer

Fig. 1. Structure of the RBFN.

In this paper Gaussian function is selected as a
basis function, and the output of RBEN is
calculated by the weighted sum method. (3) shows
the i-thoutput of RBFN.

M
Yi =Ecij¢j i=112y"'7L (3)

j=1

—u. N2
¢}| (X) = EX[{—' l._:{#_"__) (4)
%

where M and L are the number of hidden nodes and
output nodes, respectively. ¢;; is the weight that connects
the j-th hidden node to the i-th output node of RBEN, &;is
the j-th basis function, ,&R" is the j-th center vector, g;is
the j-th standard deviation, and & denotes the number of
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input nodes.

In this paper, the RBFN is used to design a
neuro-adaptive controller because its structure is simpler
than the MLP. The RBEFN is employed as a nonlinear
function approximator. (5) shows the system model based
on the RBFN with m hidden nodes.

y=cT¢+e )
where
y=[Y1)’z“'yL]T o= [¢1¢2 ¢M]T
C11 G127 Cim
=t &t 1] c=[e,ez--- fL]T

CLi €L Cum
In (5), there are approximation error vector €because
we just consider the finite dimensional hidden nodes of

RBNF. The approximation error vector € can be made
very small. Its norm is bounded by a known constant
value according to the approximation theorem [6][10].
That is,

lell < ey ©

where €y is the upper bound of I} € Il .

IV. Nero-Adaptive Controller

The proposed neuro-adaptive controller has a
parallel structure that consists of the RBFN and PD
controller. Fig. 2 shows the structure of the
proposed controller.

Fig. 2. Structure of the proposed controller.

Since the RBEN is trained in real-time, we can
get good performance even under the existence of
disturbances and change of parameters.

To wupdate the parameters of the RBFN,
adaptation laws are contructed using the Lyapunov
stability theory. If the reference trajectory,
ER", is given, the tracking error e is defined as
q,—q. And we propose a neuro-adaptive controller
as follows:

r=¢Td(x) +Ks (7)
x=haqal , a=qtm, A=A >0,
s=e+/e , and is diagonal and positive definite.

we have the following adaptation laws:

c=IosT (8)

W=—Tyls 4 ©)

where

o=—"Lls e (10)
where I, I and I} are diagonal, symmetric and
positive definite matrices.
To prove the stability of the total control system,
a Lyapunov function candidate is defined as
V=35 + (ST + g u (@) + (6775 9)
)
where c(=c —¢) is the weight matrix error
between the optimal weight matrix ¢’ and
estimated weight matrix ¢ of the RBFN in(7). Also
u(=u"—-u) and 5(=0c" ~0o) denote the center error
and standard deviation error, respectively.

We have the following inequality:

V- Ist {—Km I8l +bd+¢N+%u,’,u+—l-a'°w}

; (12)

where K_; is the minimum diagonal element of

K, u
the maximum value of [l o Il .

If we have the following condition:

is the maximum value of |l u" [l ,and o is

max

bytent+ lu,znu +laf,m
4 4
Isll = ,

Kmin

(13)

then

V<0 (14)

V. Experimental Resuits and discussion

A SCARA-type robot manipulator shows in Fig.
3 is employed as a testbed in this paper.

N Fig. 3. SCARA type robot manipulator.

The proposed neuro-adaptive controller is
compared with two other controllers: the PID
controller and the neuro-controller using the MLP
[5). The first control scheme is a PID type
conventional control method with constant gains
such as K,=24.23, K,=7.27, K,=0.60, K,=39.9,
K,=834, and A,,=1.78 for the joints 1 and 2. In
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order to experiment the neuro-controller using the
MLP, we have four and ten neurons in the input
layer and hidden layer, respectively. The
errot-backpropagation algorithm' is used as an
updating algorithm for the neuro-controller using
the MLP. The proposed control inputs (7), (8), (9),
and (10) are used for the experiment. Control
parameters are given in Table 2. The numbers of
neuron of the RBFN is set to be ten. The sampling
time is set to be 5[ms]. Three different cases of
experiments are done to consider the performance
under various environments. The first case is for a
sinusoidal reference trajectory with frequency, w
=3.76[ms].

The reference input trajectories are defined as
d (t)=04cos(3.76t)[rad]and dj(t)=0.4{sin(3.76t)+1}
[rad] for the joints 1 and 2, respectively. Fig. 3 and
4 how the tracking errors of the PID controller, the
neuro-controller using the MLP, and the proposed
controller. The neuro-controller using the MLP and
the proposed controller can make the tracking
errors reduced during the learning process since
both controllers have the learning ability. But the
proposed controller has faster reduction rate in
tracking errors than the neuro-controller using the
MLP.

Experimental results mentioned above indicate
that the proposed controller is very adaptable to
the environmental changes and is more robust than
PID controller and the neuro-controller using the
MLP.

VI. Conclusions

This paper presents a neuro-adaptive controller
using the RBEN to control robot manipulators. The
proposed controller has a parallel structure that
consists of the PD controller with fixed gains and
the RBFN. The weights and both of centers and
standard deviations of the RBFN are adjusted in
real-time. The learning laws are constructed using
the Lyapunov stability theory.

This paper shows that tracking errors are
bounded uniformly and ultimately under the
existence of disturbances and modeling errors. The
SCARA type robot manipulator is employed as a
testbed for the proposed neuro-adaptive controller.
We compared the proposed controller with two
different controllers: the PID controller and
neuro-controller with the MLP. Experimental
results show that the proposed neuro-adaptive
controller is adaptable to environment changes and
is more robust than the conventional PID controller
and neuro-controller with the MLP.
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Fig. 3. Tracking errors of the joint 1.
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