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ABSTRACT

This paper proposes an evolutionary learning algorithm to discipline the projection neural networks
(PNNs) with special type of hidden nodes which can activate radial basis functions as well as sigmoid
functions. The proposed algorithm not only trains the parameters and the connection weights but also
optimizes the network structure. Through the structure optimization, the number of hidden nodes neces-
sary to represent a given target function is determined and the role of each hidden node is decided
whether it activates a radial basis function or a sigmoid function. To apply the algorithm, PNN is real-
ized by a self-organizing genotype representation with a linked list data structure. Simulations show that
the algorithm can build the PNN with less hidden nodes than the existing learning algorithm using error

back propagation(EBP) and network growing strategy.

1. Introduction

The performance of neural network depends main-
ly on the structure of the networks which comprises
the number of hidden layer, the number of nodes in a
hidden layer, the weights between layers and the ac-
tivation function, etc. But when a neural network ap-
proximates a function, there is no general method to
determine the things enumerated above. A very sim-
ple method we can do easily is as follows: build a
neural network, discipline it, test it for a desired func-
tion, modify its structure and repeat this routine until
the result is satisfactory. However, this method takes

too much time and is very boring procedure. In ad-
dition, we cannot find what relation between stucture
and performance exists. In according to recent study,
finding the optimal network structure and disciplining
the network are NP-complete problems. And we can
enhance the efficiency of leamning by constraining the
structure intuitively [1]. Many approaches to op-
timizing the structures of neural networks by means
of evolutionary algorithms have been studied {1, 2].
Neural networks, if they have different activate
functions respectively, show their own characteristics
when they approximate a certain function. It can be
shown that multilayer perceptron with sigmoid func-
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tions as activation function approximates any func-
tions. However when we use it to represent a locally
salient function, the size of network comes to be big,
which is an inefficient strategy. On the other hands,
many neural networks with radial basis functions as
activation function are also available for function ap-
Although
represent a locally salient function, many nodes in

proximation. these models can easily
hidden layer is required to represent a globally
spreaded function such as plane. To combine the two
characteristics efficiently, there have been many ef-
forts [3, 4, 5, 6]. Most of them is to combine simply
sigmoid network and radial basis network. Recently
Wilensky and Manukian suggested the projection
neural networks (PNNs) which can represent both ra-
dial basis function and sigmoid function by same
structures with different parameter values [11]. The
PNN has been extended to a general form so that it
can be applied to function approximation problem [7].
They have also proposed network growing learning
~ algorithm for PNN to deal with local minima prob-
lem in EBP learning. The learning algorithm shows
good performance but can't optimize the network and
results in over creation of hidden nodes.

To optimize and train the PNN, this paper in-
troduces an evolutionary learning algorithm. We in-
vestigate how the projection neural networks can ac-
tivate such functions which have different charac-
teristics and how evolutionary algorithm is modified
and applied for the projection neural networks. We
first represent a PNN (its structure and parameters)
by a genotype form. Parameters of hidden node and
connection weights between layers are coded by bi-
nary string and structure is realized by linked list
data structure. Individuals which are created at the
stage of initialization of population. The number of
the hidden nodes of each individual is somewhat ran-
dom in a certain predefined range. Thereafter as nor-
mal evolutionary algorithm does, we apply genetic
operators to each individual, evaluate fitness values
and reproduce new generation, and so on. Here we a-
dopt new operators to optimize the network structure.
They are node appending and node deleting operators.
These are also probabilistic operators which can in-
crease or decrease the number of hidden nodes. Be-
sides, as generation goes, we change the probability
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with which genetic operators are applied and the
genetic parameters such as scaling factor in fitness
functions. And we apply this algorithm to PNN to ap-
proximate given target functions and discuss its per-
formance compared to the existing algorithm.

2. The structure of projection neural net-
work

The main difference between PNN and other NN
is that PNN projects the original n-dimensional input
vector onto the n+1-dimensional vector and utilizes it
as a new input vector.

The details of this scheme are as follows : 1) pro-
ject the original input vector x; =[x, x,,. ~'-x,,,i"}T

onto the n+1-dimensional vector x=[x x5 " XuX,,; |
by appending a new coordinate n which is orthog-
onal to the original n-dimensional space; 2) nos-
malize the projected vector to have magnitude R in
the n+1-dimensional space. Then the projected and
normalized vector is expressed as follows.

R

X=

{Xi BT
f+h?

M

H Xori

This vector(1) is used as an input vector to the net-
work.

In addition to projection and normalization of the
input vector, the weight vector between nodes of in-
put layer and nodes of hidden layer also should be
normalized to have magnitude R. Hence,

w; :[wtlwiZ.”wan]T
(i=1,2,,m)

Fw =

@
3

where 1, m are the number of nodes in input layer
and hidden layer respectively.

The output of each hidden layer node (4) obtained
through activation function (5) whose input is the
result of subtracting the bias B; from the inner pro-
duct of x and w;

1
.= 4
b lvexp(~p (W, T x=f)) @
where I; is shaping parameter.
_ 1
0O = )
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The total output of neural network which has m
hidden nodes can be represented in (6).

A m n+1

f(x)zzviq)(ui(zlwijxj—ﬁi)) )

i=1 j=
where v; is weight from ith hidden node to output
node.

Now we look into how PNN can activate both sig-
moid function and radial basis function. In equation
(4), since w, x=||wi|| || x|[cos®=R* cosB, w x de-
pends only on the angle 8 between input vector and
weight vector. To simplify analysis, we set R and L
arbitrarily to be 1. Then ¢; becomes

_ 1
B 1+exp(—(cos@-0))

¢ 9

In Fig. 1, we plot the ¢; with respect to several {3
It can be noted that if O includes 6=0, radial basis
function will be activated and if 6 doesn't includes 6=
0, sigmoid function will be activated. For example,
for a certain range of input vector if w; is included in
the range (w; in Fig. 2), 6 will have surely 0 value at
a input vector, and this case results in activating a ra-
dial basis function. This case is plotted in Fig. 3. on
the contrary, if w; is not included in the range of in-
put vector (w- in Fig. 2), 6 never has 0 value for any
input vector, this case results in activating a sigmoid
function. This case is plotted in Fig. 4.

In addition, we can note [3; takes part in varying
the peak value and we can also guess that p, will
be used in adjusting the width of range where 6,
ctivates.
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Fig. 1. 6, with respect to various [,

Fig. 2. Projeciion from n-dimensional space to n+1-di-
mensional space
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Fig. 3. Redial basis function activated when f,=1, 1,=100,
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Fig. 4. Sigmoid function activated when B,=0, u=25, w=
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3. Evolutionary learning algorithm for PNN

Using evolutionary learning algorithms for neural
network can be summarized as follows : 1) represent

a neural network (its structure and parameters) by a
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genotype; 2) compose individuals which are geno-
typic neural networks into a population; 3) apply
genetic operators;

4) assign a fitness value to each individual; 5)
reproduce a new population on the basis of fitness
values; 6) and iterate this procedure, which is called
as a generation, until criteria are satisfied.

But, evolution of neural network is slightly different
from optimizing regular multivariable functions. Be-
cause the role of parameters in the neural network is
not uniform. So to obtain a solution fast and precisely,
modifying operators and constraining environment ac-
cording to given problem are needed [9, 10].

3.1 Representation of PNN

To discipline PNN by using evolutionary algorithm,
structure and all parameters of network must be
represented by a genotype. In the case of PNN, we
use only one hidden layer, and input nodes and out-
put nodes are determined by given problem. Hidden
layer nodes, their parameters and connection weights
are included in a genotype which describes the PNN.

The PNN may have many nodes in hidden layer
and this structure can be coded by the linked list data
structure as shown i Fig. 5. The order of nodes and
the information about which nodes are connected to
each other are not important. We concern only how
many hidden nodes there are and what values their
parameters have. Each field in a node is coded by a
certain length of binary string which can be
transformed to a real value. If a field is too short, the
parameter cannot have minute value, and if a field is
too long, the solution space is so huge that we can-
not find solution conveniently. In the Fig. 5, we must
note that role of parameter in PNN is different to
each other. Some are weights and others are shaping
parameters, etc. In addition, they have difference in
the range in which they have value.

In other words, the coded genotype is not uniform
through fields. So determining the range of each field
and the probability with which we apply genetic
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Fig. 5. Genotype for a ncural network
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operators to each field is very important.

In the Fig. 5, w,, is a weight between mth input
node and sth hidden node, W, . are shaping factor,
bias value of mth hidden node, respectively, and v,, is
a weight between mth hidden node and output node.
The field representing B, is treated somewhat tricky.
We do not use the B value itself. We transform it to
zero or one when constructing PNN from genotype
form. The reason we do such a thing is for PNN to
approximate target function more efficiently, because
PNN activates sigmoid function more explicitly when
B is close to zero and PNN represents radial basis
function well when B is almost one.

3.2 Application of mutation operator

Basically mutation is toggling a bit. With a certain
probability mutation operator is applied to each bit in
a field of each individual. And the probabilities
which are applied to different fields are different. The
reason is stated at the previous subsection.

3.3 Application of crossover operator

There are many methods to apply crossover opera-
tor. Since several nodes are connected to each other
in neural network, dependency among nodes is so
strong. Therefore, crossover operation is very des-
tructive in evolution of neural network. Here, we a-
dopt node level change. In PNN the order of nodes
in linked list data structure is not important. So, one
node in individual A is exchanged with one node in
individual B. Surely this operation is probablistic and
it is also impossible to know which node in each in-
dividual will join this procedure. We cannot know
whether the selected node goes well with other nodes
or not. It is desirable to apply this operator with as
small probability as possible.

3.4 Appending and deleting hidden nodes

According to a given problem, there may exist optimal
hidden nodes. Because we are willing to find not only
optimal parameters but also optimal number of hidden
nodes, there must be node appending and node deleting
operator. To do this, we calculate the error of node itself
when evaluating RMSE of the whole network. Among
many nodes which compose a PNN, some are very help-
ful to network and others do not contribute or even de-
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grade the performance of network. We want to prune the
worst node in an individual and share the best node with
another individual.

Node appending operator is similar to crossover
operator. This operator is also applied with a certain
probability. It operates as follows : find a minimal er-
ror node, which we can think to approximate target
function well in some region, in an individual and ap-
pend the node to its mate. Similarly, node deleting
operator deletes a maximal error node, which we can
think to be not helpful to network, in an individual if
the invidual has more nodes than a certain predefined

minimum nodes.

3.5 Selection and reproduction

Evaluating the fitness values of individuals, select-
ing excellent individuals and reproducing new gen-
eration are most important in evolutionary algorithms.
In order to enhance evolution speed toward global op-
timum and not to fall into local optimum, following
methods are required.

First, after obtaining objective function values we
must scale the values to use them as fitnesses.
Without scaling, in the early generation there is a ten-
dency for a few super individual to dominate the
whole population. Therefore, before searching

through enough solution space, entire individuals con-
verge to a local optimum. In this case fitness values
. must be scaled down to prevent takeover of the po-
pulation by these super individuals.

And in the later generation, when the population is
largely converged, competition among individuals is
less strong and evolution tends to wander. In this
case fitness values must be scaled up to accentuate
differences between individuals.

Here, we adopt G-truncation method as described

in equation (8).

F=F-F+ac )

In this equation, F is mean fimess value of po-
pulation, ¢ is standard deviation of population and
scale factor a is constant. We can set negative results
(F) arbitrarily to be (.

Second, in order to preserve the succession to prece-
eding generation, we must prevent operators from des-
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troying the population. Hence elitism is indispensable.
This plan excludes the best individual generated upto
the current generation from the application of genetic
operators in order to make it exist unchanged in the
next generation. In convergence analysis of genetic al-
gorithms it is proved that without elitism genetic al-
gorithm is not convergent[12].

4. Simulations

4.1 Implementation of evolutionary algorithms

Population of a generation is composed of 50 in-
dividuals. One individual may have many nodes
which are composed of ficlds of parameters, respec-
tively. Here, one field is 8-bit binary string. Hence,
the resolution is 256. And one node has 6 fields (w,
wy, wi, W, B, V), because functions we will ap-
proximate here are all two-dimensional.

As generation increases, we vary parameters of al-
gorithm such as probabilities of operators, scale fac-
tor, etc. Usually, mutation probability and crossover
probability should decrease as generation goes. In
our simulation, mutation probability and crossover
probability start at 0.005, 0.05 respectively and end
at both 0. And node appending and deleting pro-
babilties increase from 0.1 to 0.2 linearly.

As decribed in section 3.5 scaling of fitness is
done by using o-truncation method(8). At (8) scale
factor o also can be varied. In our simulation o de-
creases from 3.0 to 1.0 linearly.

Finally at selection and reproduction we adopt elitism.

4.2 Result 1

Function to be approximated by PNN is described
in (9) and illustrated in Fig. 6. It is noted that this
function is the mixture of a radial basis function and
a sigmoid function. We can easily guess that about 2
hidden nodes are optimal.

0.9

1
+
1 +exp(—15(x —0.5))

fl(X,y)Zexp[—M]

®

In our simulation the algorithm found the optimal
PNN which had 2 hidden nodes. And the average
node values are described in Table 1. Fig. 7 is the
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Fig. 6. Target function fi(x, y)

output function fA (x ¥).

The constraints we take are as follows : At in-
itialization of population the individual has nodes
between 1 and 10. The ranges of parameter values
are wi, w,, wi=[-1,1}, p=[0,100], v=[0,2], B=[0.1].
And RMSE(Root Mean Squared Error) is calculated
at 900(30x 30) points. If RMSE of the elite in any
generation goes below 0.03, then iteration stops.

All simulation was done under UNIX environment
of Sparc 20 system. C++ language was used.

Table 1. Parameter values of hidden nodes

node w, W, W, u v B
1 0.898 -0.011 -0.442 251 -0.980 0.38%8
2 -0.422 0.003 0906 455 1.92  -0.976

Table 2. comparision between the evolutionary algorithm
and the newtork growing algorithm with EBP

method RMSE  structure(i-h-o) time
EBP 0.028 3-11-1 7 min
Evo. 0.021 3-2-1 20. min
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Fig. 7. Output function f"(.\', ¥)
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Fig. 8. Elite's learning curve(RMSE)

4.3 Result 2

Function to be approximated by PNN secondly is
described in (10) and illustrated in Fig. 9. This time
it can be noted that only radial basis functions com-
pose the whole target function and about 4 hidden
nodes are optimal.
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Fig. 8. Target function fi(x, y)
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Fig. 10. Output function f(x, ¥)
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Table 3. parameter values of hidden nodes

node w, w, w; n v B
1 0.407 0433 0805 278 0996 0945
2 -0.410 0.391 0.823 498 -1.655 0.881
3 -0.367 -0.388 0.845 553 1.89  0.962
4 0.389 -0.415 0821 6588 -193 0.727
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Fig. 11. Elite's learning curve(RMSE)
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- (x+05)+(y-05)* (10)
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In our simulation the algorithm found the network
which has 4 hidden nodes. And the result is des-
cribed in Fig. 10 and the value of nodes in Table 3.

5. Conclusions

In this paper, we have suggested the evolutionary
learning algorithm for the projection neural network
which can be used in approximating continuous func-
tions. The proposed algorithm is not liable to indulge
in local minimum and uses only objective function in-
formation without derivatives or other auxiliary
knowledge unlike the conventional EBP algorithm.
Moreover the algorithm gives the construction of op-
timal PNN with much less hidden nodes than the ex-
isting network growing algorithm with EBP.

But, this algorithm needs much resources such as
time and memory space because many individuals oc-
cupy much memory space and iterations take much

time. And the result is somewhat probabilistic. Hence,
on every ftrial the result may be different. In addition,
this algorithm can not tune the parameters very pre-
cisely. To a certain degree, this algorithm can find the
almost optimal parameters. For the more fine tuning,
EBP algorithm can be additionally applied to the op-
timized PNN by the proposed evolutionary algorithm.
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