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ABSTRACT

Spray drying is a unique drying process for powder production. Spray dried product must be free-flowing in order to fill the
pressing dies rapidly, especially in the ceramic production. The important powder characteristics are; the particle size distribu-
tion and moisture content of the finished product that can be estimated and adjusted by the spray dryer operation, within limits,
through regulation of atomizer and drying conditions. In order to estimate the moisture content of the resultant dried product, we
modeled the control system of the drying process using two different Artificial Neural Network (ANN) approaches, namely the
Back-Propagation Multiplayer Perceptron (BPMLP) algorithm and the Radial Basis Function (RBF) network. It was found out
that the performance of both of the artificial neural network models were quite significant and the total testing error for the 100
data was 0.8 and 0.7 for the BPMLP algorithm and the RBF network respectively.
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1. Introduction

pray drying is a drying process, since it involves both

particle formation and drying. Powder characteristics
and properties can be controlled and maintained constant
throughout a continuous operation. Spray drying is the
transformation of feed from a fluid state into a dried partic-
ulate form by spraying the feed into a hot drying medium.
The feed can either be a solution, a suspension, an emulsion
or a paste. The resulting dried product conforms to powders,
or granules. The form of which depends upon the physical
and chemical properties of the feed and the dryer design
and operation (K. Masters). Spray drying is a procedure
which in many industries meets the most desirable dried
product specifications for subsequent processing or direct
consumer usage. Any form of dryer provides means of mois-
ture removal by application of heat to the feed product and
control of the humidity of the drying medium.

Spray dryers can be controlled either manually or by auto-
matic systems. Manual control is applied to small plant and
large industrial units operations. S. J. Lukasiewicz states
that “the demands on operating continuous operation and
the maintenance of constant product quality over lengthy
durations of production make automatic control a virtual
necessity”.
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2. System Parameters |dentification

Many operational variables associated with atomization
and the drying operation can alter the characteristics of the
dried product. Free-flowing characteristics of dried product
are vitally important. The variables causing flow-ability and
rate of humidity are summarized as follows; Humidity, the
result of moisture content, is an important product parame-
ter for control system of spray dryers. E. Negre and E.
Sanchez searched about the system parameters, and found
out that the humidity of particles depend on so many other
parameters including the outlet temperature, the inlet tem-
perature, the feed viscosity, the pressure of the production
system, the amount of chemicals used and also the solid
content of the slurry in spray drying process.

The outlet temperature represents the product quality,
i.e. bulk density, color, flavor, and activity, as well as the
moisture content. For a fixed moisture content and dryer
design, the outlet temperature must be kept within a nar-
row range to maintain the powder packing and flow require-
ments. The increase in outlet temperature decreases
moisture content at constant air-flow and heat-input condi-
tions. The increase in the inlet temperature, which is the
other parameter that effects the moisture content of the
spray drying process, increases the evaporative capacity at
constant air rate. Increased inlet temperature often causes
a reduction in bulk density, as evaporation rate is faster
than products dry so it causes a more porous or fragmented
structure (J. S. Reed).

The feed viscosity is another parameter that effects the
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product characteristics; An increase in feed viscosity
through increase in feed solids or reduction in feed tem-
perature will produce coarser sprays on atomization at
fixed atomizer operating conditions. Increase in feed sol-
ids affects evaporation characteristics, where increases in
particle and bulk density results. The feed pump transfer
the product to the atomizer either directly or via a con-
stant head feed tank. One of the most important features
is the ease of particle size control merely through wheel
speed control. The mean size of the product is directly pro-
portional to the feed rate and feed viscosity and inversely
proportional to the wheel speed and wheel diameter. Vari-
ation of pressure gives control over feed rate and spray
characteristics. O. Taylan and H.Taskin developed a fuzzy
model of spray dryers. The mean size of a spray product is
directly proportional to feed rate and viscosity, and
inversely proportional to pressure. For low viscosity feeds,
fine particles can be produced, although the resulting
dried powder may be agglomerated (O. Taylan, A. Golec,
and H. Taskin).

Spray drying is an expensive method of evaporating vola-
tiles to obtain optimum heat utilization conditions. The
spray dryer should always be fed with the maximum solids
feedstock possible. Increased feed solids lead to heavy dry-
ing chamber deposits and product degradation. The heat
required to evaporate a given quantity of water is virtually
the same irrespective of product output and thus if there is
significant increase in product output with increase in feed
solids for a given evaporative capacity, this is a clear indica-
tion of a reduction in the heat required to produce a unit
weight of powder on increasing the feed solids.

In the spray drying process, as it was explained above, the
relation between the moisture content and the input param-
eters are highly non-linear. But, spray dried powder must
have a controllable particle size distribution, consists of
spherical particles which is ideal for pressing operations.
These characteristics meet the correct degree of free-flow
properties required for pressing operations that requires a
specific powder quality to overcome product sticking to the
dies. Sticking leads to non-uniformity in ceramic surfaces.
This non-linear relations can be modeled using non-linear
empirical modeling techniques. Neural networks are capa-
ble of approximating any continuous non-linear functions,
and have been applied to non-linear process modeling. A
major task for a neural network is to learn a model of the
environment in which it is embedded and to maintain the
model sufficiently consistent with the real world so as to
achieve the specific goals of the application of interest. In
any event, the observations so obtained provide the pool of
information from which the examples used to train the neu-
ral network are drawn.

In this paper, we used two different artificial neural net-
work models to represent the knowledge about the spray
drying process. In the next section, we explain these two
models used to predict the moisture content of the process
in detail.
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Fig. 1. Multilayer perceptron network.
3. Model Description

Artificial Neural Networks (ANNs) are systems that are
deliberately constructed to make use of some organizational
principles resembling those of the human brain (Chin-Teng
Lin and C. S. George Lee). Generally speaking, artificial
neural networks are computing systems made up of a num-
ber of simple highly interconnected signals or information
processing units that are called as artificial neurons.

In this work, two different architectures are used to model
the system at hand. The first approach is the Back-Propaga-
tion Multilayer Perceptron (BPMLP) algorithm. The Multi-
layer Perceptron (MLP) network is a feedforward network
in which artificial neurons are arranged in a feedforward
manner (A. Cichocki and R. Unbehauen). The network
architecture of a MLP is shown in Fig. 1. It consists of n,
inputs, n, artificial neurons in the first hidden layer, n, arti-
ficial neurons in the second hidden layer and n, outputs.

The MLP is supposed to perform a specific nonlinear map-
ping which can be expressed in terms of a given set of learn-
ing examples. Learning of the MLP consists in the
adaptation of all synaptic weights in such a way that the
discrepancy between the actual output signals and the
desired signals, averaged over all learning examples, is as
small as possible.

The standard back-propagation algorithm uses the steep-
est descent algorithm to minimize the mean squared error
function. The error function for the p’ th example is defined
as follows

3 ng
1 2 1o 2
E,= Qz(djp_yjp) = §zejp (¢V)
j=1 j=1

where, e, , d,, and y,, are the instantaneous squared error,
desired output signal and the actual output signal for the p’
th learning example, respectively. The global error function
can be summed over all learning examples and can be given

as follows

Etotal = zEp = %zzesz (@)
p pJ

In this study, we used the on-line algorithm to update the
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weights. In the on-line algorithm, for each learning example
presented as an input, all weights are updated before the
next learning example is presented. In this algorithm, all the
synaptic weights w;, are changed by an amount of Aw; where

JE
Awj;=-1n=—2, n>0 3
J owj;

In the above equation 7 is a learning parameter. One can
derive an updating formula for the weights given as

Aw,; = ndo, 4)

where &, is the local gradient of the hidden neuron j and o,
is the function signal at the output of neuron i. This func-
tion signal o, at the output of neuron i is obtained by passing
the weighted sum of inputs to neuron i from a nonlinear
activation function. The activation function chosen in this
study is a unipolar sigmoid function which can be defined as
follows

1

()
where % > 0 is a constant value.
In Equation 5, u, is the weighted sum of the inputs to the
neuroni, and for the first hidden layer it can be defined as

]
u;= Zwijxj+ o, (6)
j=1

where 6, is a bias value and x; is the 7 th component of the
input pattern (learning example). The local error of the
internal hidden layer is determined on the basis of the local
errors at the upper layer. Starting with the highest output
layer we compute (')‘J."“‘ which is a vector of the local gradient
at the output layer of the j° th neuron using the equation
given as

8'{/.0'“
& =(dp—yp) 55w M
J Jp o Jip auj t

where %”"t is the unipolar sigmoid function at the output
layer. One way to improve the back-propagation multilayer
learning algorithm is to smooth the weight changes by over-
relaxation. In other words, by adding the momentum term,
that is defined as;

Awﬂ(k) = T)5j0i+aiji(k—1) (8)

where 0<a<1

The second term in Equation 8 is called the momentum
term that makes the current £’ th search direction an exper-
imentally weighted average of past 2 — 1’ th directions. This
term damps the effect of the learning parameter, 7, that
may cause parasitic oscillations which prevent the algo-
rithm from converging to the desired solution. Hence, it
enables the improvement of the convergence rate and the
steady state performance of the back-propagation multi-
layer learning algorithm.
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The second approach that we used in this study is the so
called Radial Basis Function (RBF) network. The RBF net-
work used in this work is given in Fig. 2. It consists of an
input layer, one hidden layer and an output layer.

The transformation from input space to output space is
nonlinear and the transformation from hidden unit space to
output space is linear (Simon Haykin). The set of basis func-
tions (@) 1i=1,2,......... ,M} is defined as follows

D,(x)=G(| x~t; ) =exp(- x—t; ), =123 M9

where {t,1i=12,....... ,M]} is the set of M centers to be
determined and x is the one of the training (input) data in a
set ix, 1i=12,....... .M} of size N. Typically, the number of
basis functions is less than the number of data points (i.e.
M < N). Our aim is to find the suitable w values in order to
minimize the Euclidean norm.

1d - Gw I, where d = [d,,dy,.......... A"
G| x-t1 ) G(xi~to]) - - G(| x1ty |
G(" xXo—t; ") G(” Xo—tg ”) ...... G(” Xo—ta ")
| ; 5 (10)
G| xn—t1 ) G| xn—t2]) = G| xx—ta |)

1 Waeeeenns awy )"

The vector d is an N-dimensional desired response vector,
the matrix G is a NxM matrix of Green’s functions and the
vector w is M-by-1 weight vector for the linear transforma-
tion from hidden unit space to output space. The minimum
norm solution to the over-determined least squares data fit-
ting problem can be given as follows.

w=(G'G'G"d (11)

and w = {w

The set of centers (¢, It =1,2,........ ,M} can be selected
randomly from the set of data points, and can be selected
using the clustering techniques to find the suitable cen-
ters or can be selected using gradient descent algorithm.
In this study, we used random selection and also k-means
clustering algorithm to find the set of centers for the
radial basis functions.



356 Journal of the Korean Ceramic Society - Osman Taylan and Ali Haydar

3.1. Experimental Results and Discussions

For this study, we took 450 numerical data for input and
output parameters of a spray dryer which produce powder
for a porcelain production factory in Turkey. All these data
were taken during 8 months period of observation in the fac-
tory. The input parameters related data are collected during
the production for every hour and then in order to deter-
mine the moisture content for this duration, the samples
are taken from the finished product and measured in the
laboratory by staff.

In this study, our aim is to predict the moisture content
which is the most effective product parameter for the spray
drying process. We used two different artificial neural net-
work approaches, namely the back-propagation multilayer
perceptron algorithm and the radial-basis function network
in order to find a non-linear relation between the moisture
content and the six input parameters given as; the inlet
temperature (x1), outlet temperature (x2), the feed viscosity
(x3), the pressure of the production system (x4), the amount
of chemicals used (x5) and also the solid content of the
slurry (x6) in spray drying process. In this study, we used
450 data for training and testing processes. Each data con-
sist of 7 values, including the 6 input parameters given
above and an output value that shows the moisture content
(x out) of the system. These 7 parameters are normalized
using the formulas given below.

x1,, = (x1—300)/60, x3,, = (x3 — 10)/10, x5, = (x5 — 80)/15

x2,,, = (x2-90)10, x4, = (x4 — 10)/10, x6 , = (x6 — 1550)/
40, xout = xout/5 (12)

This normalization is performed in order to get rid of the
great difference between the values of these 6 parameters
and the output is normalized in order to make it in the
range [0,1). However, in the calculation of training errors
and testing errors using equation 1 and equation 2, we mul-
tiplied the predicted values by 5 and compared them with
the desired values. Among these 450 data obtained at differ-
ent time intervals, 350 of them are randomly selected for
training and the rest are used for testing.

The first approach is to model the system at hand using
BPMLP algorithm. As we mentioned in the model descrip-
tion part, there are some system parameters that are not
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known and should be predicted. These system parameters
affect the effectiveness and convergence of the back propa-
gation learning algorithm. Among them is the learning con-
stant 1, the momentum parameter «, and the number of
hidden neurons in the first layer n, and in the second hid-
den layer n,. It is known that, there is no single learning
constant value suitable for different training cases and
hence 77 is usually chosen experimentally for different prob-
lem. A larger value of 7 could speed up the convergence but
might in result in overshooting while a smaller value of 1
has a complementary effect. The other system parameter is
the momentum parameter o which is mainly helping to
speed up the convergence and to achieve an efficient and
more reliable learning profile. The momentum parameter «
is in the range of [0, 1] and usually a value of 0.9 is used for
this parameter.

In real-world problems, the fundamental question is
raised about the size of the hidden layers. The exact analy-
sis of this issue is rather difficult because of the complexity
of the network. Hence the parameters n, and n, are usually
determined experimentally. In order to select the parame-
ters given above, we performed an experiment. For this
experiment, the momentum parameter i was fixed to 0.9
and the weights are initialized as small random values. In
Fig. 3, we have shown the total training error for different
learning constant values (= 0.1,0.15,0.2,0.5), for different
number of neurons in the first hidden layer (n, = 5,7,9) and
for different number of neurons in the second hidden layer
(n, =3,5,7).

From the Fig. 3, we deduced that the best prediction can
be accomplished by selecting the learning constant value
equal to 0.1 and the number of neurons in the first and sec-
ond hidden layer as 7 and 3 respectively. Using these
selected parameters, we have plotted the testing error for
the 100 test data in Fig. 4. From this figure one can easily
observe that almost all the predicted values for the test data
are very close to the actual values. The total error for the
100 test data is equal to 0.8.

The second approach is to model the system using radial
basis function network. In this approach, the number of
basis functions M and also how the initial set of centers
{t.1i=1,2,....... ,M} will be selected are very important for
the performance of the system. To see the effect of M and
also the effect of selecting of ¢, values, we performed an

Error

O = N W Hh 6O ~N

(5,3) (5,5) (5.7) (7.3)

(7,5) (7.7) (9,3) (9,5) (9,7)

Number of centers selected (n,,n,)

Fig. 3. Total error for different number of centers and for different lp parameters.
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Fig. 6. Error for the test data using RBF network.

experiment using different number of basis functions
(M =17.8,)9,....,14) and using two different selection methods,
namely random selection and k-means clustering method.
The results are shown in Fig. 5. From the results, we con-
clude that the selection of #’s through the use of k-means
clustering method outperforms the random selection. Also
we observed that 9 — 10 basis functions are enough to model
the system at hand.

Hence by selecting a value of 10 for the M parameter and
by using the k-means clustering algorithm for the selection
of centers, we obtained the weights of the RBF network
using the 350 training data and using these weights, we
plotted the error for the same 100 test data as in the previ-
ous approach in Fig. 6. We have again observed that almost
all the predicted values are very close to the actual values
and we calculated that the total testing error is equal to 0.7.

From the testing errors plotted in Figs. 4 and in 6, we
selected 10 samples randomly and tabulated them in Table
1 in order to compare the performances of these two
approaches.

From Figs. 4 and 6, we observed that the total error for
testing data obtained using RBF network is less than the
one obtained using BPMLP algorithm. Table 1 confirms this
fact on the basis of single test data.

Table 1. Comparison of Test Data with the Actual Process

Data

Actual data BPMLP RBF
2.2 2.229 2.141
2.3 2.285 2.243
2.4 2.467 2.339
2.5 2.426 2.43
2.5 2.48 2.486
24 2.372 2.29
2.4 2.431 2.38
2.4 2.554 2.4
2.3 2.488 2.22
2.5 2.41 2.417
2.5 2.32 2.5
2.7 2.725 2.689
2.3 2.435 2.3
2.2 2.245 2.187
2.5 2.293 2.442

4. Conclusions

Spray dryers have been used into all major industries
ranging from advanced ceramics, to the food and pharma-
ceutical manufacture, and porcelain manufacture which
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requires high tonnage outputs in the heavy chemical fields.
As it was mentioned, the critical control parameters of the
plant was observed and 450 data were taken for each con-
trol parameters, for training and testing of the ANNSs
approaches. From the set, 350 of them were used for train-
ing of the model and the rest were used for testing. It is
known that in this processes, the relation between the mois-
ture content and the input parameters are highly non-lin-
ear. From ANN models, we concluded the following:

The moisture content of the product obtained from the
spray drying process can be effectively estimated using both
of the ANN approaches.

In the BPMLP algorithm, the selection of system parame-
ters namely; learning the constants, the number of hidden
neurons in the first layer n, and in the second hidden layer
n,, are very important and the total testing error varies for
different parameter selection. RBF network seems to be
more robust to parameter changes than the BPMLP algo-
rithm. The total error for 100 testing data using RBF net-
work is approximately equal to 0.7. The average error for a
single testing data is equal to 0.007 and the average actual
output value is approximately equal to 2.45. Hence, using
equation 1, one can conclude that the average percentage
error for each testing data is approximately 4.8% which is
an acceptable error. From the results, we deduced that the
moisture content of the resulting dried product can be esti-
mated with an acceptable error using artificial neural net-
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work approaches. It is achieved that, ANN approaches can
be used for modeling this powder production processes We
used C++ programming language for writing the programs
of two ANN modeling approaches.
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