• Title/Summary/Keyword: RSM optimization

Search Result 704, Processing Time 0.033 seconds

Optimization of Mixing Ratio of Mulberry Leaf, Mulberry Fruit, and Silkworm for Amelioration of Metabolic Syndrome (대사증후군 개선을 위한 뽕잎, 오디, 누에 분말의 혼합 비율 최적화)

  • Kim, Min-Ju;Kim, Hyun-Sook;Kim, Ae-Jung
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.2
    • /
    • pp.83-95
    • /
    • 2018
  • Objectives: The aim of this study was optimized mixing ratio of mulberry leaf, mulberry fruit, and silkworm for amelioration of the metabolic syndrome by using response surface method (RSM). Methods: Antioxidant, antidiabetic and antihypertensive activities of fifteen mixed powder of mulberry leaf, mulberry fruit, and silkworm by RSM were measured as indicators of metabolic syndrome. Results: The optimal mixing ratio of mulberry leaves, mulberry fruits, and silkworm with the greatest antioxidant, antidiabetic and antihypertensive activities was as follows: 2.5890 of mulberry leaf (A), 0.1222 of mulberry fruit (B), 2.9999 of silkworm (C). At this time, it was predicted that the total polyphenol content was estimated to be 185.51 tannic acid equivalent mg/g, 1, 1-diphenyl-2-picrylhy drazyl radical scavenging activity 84.77%, 1-deoxynojirimycin content 415.66 mg/100 g, ${\alpha}-glucosidase$ inhibitory activity 64.31%, ${\gamma}-aminobutyric$ acid content 267.77 mg/100 g, potassium content 1,899.11 mg/100 g, and angiotensin-converting-enzyme inhibitory activity was estimated to be 73.78%. Conclusions: It was concluded that the significant effect of the mulberry leaf, mulberry fruit, and silkworm on the metabolic syndrome-related biological activity indices (antioxidant activity, antidiabetic activity and antihypertensive activity) was as follows: 2.5890 of mulberry leaf (A), 0.1222 of mulberry fruit (B), 2.9999 of silkworm (C).

RSM-based MOALO optimization and cutting inserts evaluation in dry turning of AISI 4140 steel

  • Hamadi, Billel;Yallese, Mohamed Athmane;Boulanouar, Lakhdar;Nouioua, Mourad;Hammoudi, Abderazek
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • An experimental study is carried out to investigate the performance of the cutting tool regarding the insert wear, surface roughness, cutting forces, cutting power and material removal rate of three coated carbides GC2015 (TiCN-Al2O3-TiN), GC4215 (Al2O3-Ti(C,N)) and GC1015 (TiN) during the dry turning of AISI4140 steel. For this purpose, a Taguchi design (L9) was adopted for the planning of the experiments, the effects of cutting parameters on the surface roughness (Ra), tangential cutting force (Fz), the cutting power (Pc) and the material removal rate (MRR) were studied using analysis of variance (ANOVA), the response surface methodology (RSM) was used for mathematical modeling, with which linear mathematical models were developed for forecasting of Ra, Fz, Pc and MRR as a function of cutting parameters (Vc, f, and ap). Then, Multi-Objective Ant Lion Optimizer (MOALO) has been implemented for multi-objective optimization which allows manufacturers to enhance the production performances of the machined parts. Furthermore, in order to characterize and quantify the flank wear of the tested tools, some machining experiments were performed for 5 minutes of turning under a depth of 0.5 mm, a feed rate of 0.08 mm/rev, and a cutting speed of 350 m/min. The wear results led to a ratio (VB-GC4215/VB-GC2015) of 2.03 and (VB-GC1015/VB-GC2015) of 4.43, thus demonstrating the efficiency of the cutting insert GC2015. Moreover, SEM analysis shows the main wear mechanisms represented by abrasion, adhesion and chipping.

Microwave Radiation-Assisted Chitin Deacetylation: Optimization by Response Surface Methodology (RSM)

  • Iqmal Tahir;Karna Wijaya;Mudasir;Dita Krismayanti;Aldino Javier Saviola;Roswanira Abdul Wahab;Amalia Kurnia Amin;Wahyu Dita Saputri;Remi Ayu Pratika
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.85-94
    • /
    • 2024
  • The optimization of deacetylation process parameters for producing chitosan from isolated chitin shrimp shell waste was investigated using response surface methodology with central composite design (RSM-CCD). Three independent variables viz, NaOH concentration (X1), radiation power (X2), and reaction time (X3) were examined to determine their respective effects on the degree of deacetylation (DD). The DD of chitosan was also calculated using the baseline approach of the Fourier Transform Infrared (FTIR) spectra of the yields. RSM-CCD analysis showed that the optimal chitosan DD value of 96.45 % was obtained at an optimized condition of 63.41 % (w/v) NaOH concentration, 227.28 W radiation power, and 3.34 min deacetylation reaction. The DD was strongly controlled by NaOH concentration, irradiation power, and reaction duration. The coefficients of correlation were 0.257, 0.680, and 0.390, respectively. Because the procedure used microwave radiation absorption, radiation power had a substantial correlation of 0.600~0.800 compared to the two low variables, which were 0.200~0.400. This independently predicted robust quadratic model interaction has been validated for predicting the DD of chitin.

Optimization of Culture Medium for Lactosucrose ($^4G-{\beta}$-D-Galactosylsucrose) Production by Sterigmatomyces elviae Mutant Using Statistical Analysis

  • Lee, Jong-Ho;Lim, Jung-Soo;Song, Yoon-Seok;Kang, Seong-Woo;Prak, Chul-Hwan;Kim, Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1996-2004
    • /
    • 2007
  • In this study, the optimization of culture medium using a Sterigmatomyces elviae mutant was investigated using statistical analysis to increase the cell mass and lactosucrose ($^4G-{\beta}$-D-galactosylsucrose) production. In basal medium, the cell mass and lactosucrose production were 4.12 g/l and 140.91 g/l, respectively. However, because of the low cell mass and lactosucrose production, optimization of culture medium was carried out to increase the cell mass and lactosucrose production. Culture media were optimized by the S. elviae mutant using analysis of variance (ANOVA) and response surface methodology (RSM). Central composite designs using RSM were utilized in this investigation. Quadratic models were obtained for cell mass and lactosucrose production. In the case of cell mass, optimal components of the medium were as follows: sucrose 1.13%, yeast extract 0.99%, bactopeptone 2.96%, and ammonium sulfate 0.40%. The predicted maximum value of cell mass was about 5.20 g/l and its experimental value was 5.08 g/l. In the case of lactosucrose production, optimal components of the medium were as follows: sucrose 0.96%, yeast extract 1.2%, bactopeptone 3.0%, and ammonium sulfate 0.48%. Then, the predicted maximum value of lactosucrose production was about 194.12 g/l and the corresponding experimental value was about 183.78 g/l. Therefore, by culturing using predicted conditions, the real cell mass and lactosucrose production increased to 23.3% and 30.42%, respectively.

Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis (15,000 마력급 원심식 압축기 임펠러 블레이드의 유체-구조 연성해석을 이용한 형상최적설계)

  • Kang, Hyun Su;Oh, Jeongsu;Han, Jeong Sam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.547-556
    • /
    • 2014
  • This paper discusses a one-way fluid structural interaction (FSI) analysis and shape optimization of the impeller blades for a 15,000 HP centrifugal compressor using the response surface method (RSM). Because both the aerodynamic performance and the structural safety of the impeller are affected by the shape of its blades, shape optimization is necessary using the FSI analysis, which includes a structural analysis for the induced fluid pressure and centrifugal force. The FSI analysis is performed in ANSYS Workbench: ANSYS CFX is used for the flow field and ANSYS Mechanical is used for the structural field. The response surfaces for the FSI results (efficiency, pressure ratio, maximum stress, etc.) generated based on the design of experiments (DOE) are used to find an optimal shape for the impeller blades, which provides the maximum aerodynamic performance subject to the structural safety constraints.

Approximate Multi-Objective Optimization of A Wall-mounted Monitor Bracket Arm Considering Strength Design Conditions (강도조건을 고려한 벽걸이 모니터 브라켓 암의 다중목적 근사최적설계)

  • Doh, Jaehyeok;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.535-541
    • /
    • 2015
  • In this study, an approximate multi-objective optimization of a wall-mounted monitor bracket arm was performed. The rotation angle of the bracket arm was determined considering the inplane degree of freedom. We then formulated an optimization problem on maximum stress and deflection. Analyses of mean and design parameters were conducted for sensitivity regarding performance with orthogonal array and response surface method (RSM). RSM models of objective and constraint functions were generated using central composite (CCD) and D-optimal design. The accuracy of approximate models was evaluated through $R^2$ value. The obtained optimal solutions by non-dominant sorting genetic algorithm (NSGA-II) were validated through the finite element analysis and we compared the obtained optimal solution by CCD and D-optimal design.

Optimization of Spinach Pesto by Response Surface Methodology (반응표면분석법을 이용한 시금치 페스토 제조조건의 최적화)

  • Kim, Ok-Sun;Park, Jong-Dae;Kum, Jun-Seok;Choi, Yun-Sang;Choi, Hyun-Wook;Sung, Jung-Min
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.4
    • /
    • pp.583-594
    • /
    • 2016
  • The purpose of this study was to determine the optimal mixing ratio of olive oil, parmesan cheese, and nuts for preparation of pesto with spinach. Based on a surface response methodology (RSM), the independent variables were olive oil (100~300 g), parmesan cheese (25~75 g) and nuts (12~36 g). The dependent variables were physico-chemical properties as pH, color values (L, a, and b values), viscosity and sensory evaluation. pH decreased with increasing parmesan cheese levels. The L value decreased and the a and b values increased with increasing olive oil levels. Viscosity was negatively correlated with olive oil levels but positively correlated with the amounts of parmesan cheese and nuts. The addition of oil exerted a positive effect on gloss, and oily taste. In the sensory evaluation, the values of appearance, color, flavor, taste and overall acceptance were in the range of 4.4~7.2, 3.7~7.4, 4.4~7.1, 3.9~7.3 and 3.5~7.6, respectively. The sensory evaluation results showed significant values in appearance (p<0.01), flavor (p<0.01), taste (p<0.01) and overall acceptance (p<0.05). The optimal amounts of spinach pesto with olive oil, parmesan cheese, and nuts were determined by numerical optimization of a canonical model and graphical optimization. The optimal amounts were 175.29 g of olive oil, 49.51 g parmesan cheese, and 27.37 g of nuts per 100 g of spinach.

Multi-objective optimization of tapered tubes for crashworthiness by surrogate methodologies

  • Asgari, Masoud;Babaee, Alireza;Jamshidi, Mohammadamin
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.427-438
    • /
    • 2018
  • In this paper, the single and multi-objective optimization of thin-walled conical tubes with different types of indentations under axial impact has been investigated using surrogate models called metamodels. The geometry of tapered thin-walled tubes has been studied in order to achieve maximum specific energy absorption (SEA) and minimum peak crushing force (PCF). The height, radius, thickness, tapered angle of the tube, and the radius of indentation have been considered as design variables. Based on the design of experiments (DOE) method, the generated sample points are computed using the explicit finite element code. Different surrogate models including Kriging, Feed Forward Neural Network (FNN), Radial Basis Neural Network (RNN), and Response Surface Modelling (RSM) comprised to evaluate the appropriation of such models. The comparison study between surrogate models and the exploration of indentation shapes have been provided. The obtained results show that the RNN method has the minimum mean squared error (MSE) in training points compared to the other methods. Meanwhile, optimization based on surrogate models with lower values of MSE does not provide optimum results. The RNN method demonstrates a lower crashworthiness performance (with a lower value of 125.7% for SEA and a higher value of 56.8% for PCF) in comparison to RSM with an error order of $10^{-3}$. The SEA values can be increased by 17.6% and PCF values can be decreased by 24.63% by different types of indentation. In a specific geometry, higher SEA and lower PCF require triangular and circular shapes of indentation, respectively.

Optimization of Fermentation Conditions for the Ethanol Production from Sweet Sorghum Juice by Saccharomyces cerevisiae using Response Surface Methodolgy (단수수 착즙액으로부터 에탄올 생산을 위한 반응표면분석법을 이용한 효모 발효조건 최적화)

  • Cha, Young-Lok;Park, Yu-Ri;Kim, Jung-Kon;Choi, Yong-Hwan;Moon, Youn-Ho;Bark, Surn-Teh;An, Gi-Hong;Koo, Bon-Cheol;Park, Kwang-Geun
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.3-9
    • /
    • 2011
  • Optimization of initial total sugar concentration of sweet sorghum juice, aeration time and aeration rate on ethanol production was performed by response surface methodology (RSM). The optimum conditions for ethanol production from concentrated sweet sorghum juice were determined as follows: initial total sugar concentration, 21.2 Brix; aeration time, 7.66h; aeration rate, 1.22 vvm. At the optimum conditions, the maximum ethanol yield was predicted to be 91.65% by model prediction. Similarly, 92.98% of ethanol yield was obtained by verification experiment using optimum conditions after 48 h of fermentation. This result was in agreement with the model prediction.

Design Optimization of 2 Vane Pump Impeller and Volute for Performance Improvement (성능 향상을 위한 2 Vane 펌프 임펠러 및 벌류트 설계 최적화)

  • KIM, SUNG;MA, SANG-BUM;CHOI, YOUNG-SEOK;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.395-403
    • /
    • 2020
  • In this paper, the performance characteristics of the impeller and volute in the 2 vane pump were investigated using response surface method (RSM) with commercial computation fluid dynamics (CFD) code. Design variables were defined with the impeller blade angle and volute area distribution. The objective functions were defined as the total head, total efficiency and solid material size of the 2 vane pump. The design optimization of the design variables was determined using the RSM. The numerical results for the reference and optimum models were compared and discussed in this work.