DOI QR코드

DOI QR Code

Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis

15,000 마력급 원심식 압축기 임펠러 블레이드의 유체-구조 연성해석을 이용한 형상최적설계

  • Kang, Hyun Su (Graduate School of Mechanical Engineering, Sungkyunkwan Univ.) ;
  • Oh, Jeongsu (FMTRC, Daejoo Machinery Co.) ;
  • Han, Jeong Sam (Dept. of Mechanical Engineering Design, Andong Nat'l Univ.)
  • 강현수 (성균관대학교 대학원 기계공학과) ;
  • 오정수 ((주)대주기계 유체기계기술연구소) ;
  • 한정삼 (안동대학교 기계설계공학과)
  • Received : 2014.02.10
  • Accepted : 2014.03.27
  • Published : 2014.06.01

Abstract

This paper discusses a one-way fluid structural interaction (FSI) analysis and shape optimization of the impeller blades for a 15,000 HP centrifugal compressor using the response surface method (RSM). Because both the aerodynamic performance and the structural safety of the impeller are affected by the shape of its blades, shape optimization is necessary using the FSI analysis, which includes a structural analysis for the induced fluid pressure and centrifugal force. The FSI analysis is performed in ANSYS Workbench: ANSYS CFX is used for the flow field and ANSYS Mechanical is used for the structural field. The response surfaces for the FSI results (efficiency, pressure ratio, maximum stress, etc.) generated based on the design of experiments (DOE) are used to find an optimal shape for the impeller blades, which provides the maximum aerodynamic performance subject to the structural safety constraints.

본 논문에서는 15,000 마력급 원심식 압축기 임펠러 블레이드에 대한 단방향 유체-구조 연성해석 및 응답표면법을 이용한 형상최적설계를 제시하였다. 임펠러 블레이드의 형상은 공력 성능에 영향을 미칠 뿐만 아니라, 유체의 압력과 원심력에 의한 임펠러의 구조적 안전성에도 큰 영향을 미치므로 유체-구조 연성해석을 함께 고려한 형상최적설계가 필요한 분야이다. 본 논문에서 유체-구조 연성해석의 유체영역과 구조영역을 ANSYS CFX와 Mechanical을 사용하여 각각 해석하였다. 실험계획법을 기반으로 유체 및 구조해석 결과에 대한 응답표면을 생성하여 구조적 안전성 및 압축비를 제한조건으로 하고 임펠러의 효율을 최대화하는 임펠러 블레이드의 형상최적설계를 수행하였다.

Keywords

References

  1. Kim, J. H., Choi, J. H. and Kim, K. Y., 2009, "Design Optimization of a Centrifugal Compressor Impeller Considering the Meridional Plane," Journal of Fluid machinery, Vol. 12, No. 3, pp. 7-12. https://doi.org/10.5293/KFMA.2009.12.3.007
  2. Kim, S., Choi, Y. S., Yoon, J. Y. and Kim, D. S., 2008, "Design Optimization of Centrifugal Pump Impeller Using DOE," Journal of Fluid machinery, Vol. 11, No. 3, pp. 36-42. https://doi.org/10.5293/KFMA.2008.11.3.036
  3. Kim, S., Choi, Y. S., Kim, J. Y. and Yoon, J. Y., 2008, "Effect of Impeller Geometrical Parameter on the Performance of a Centrifugal Pump," Proceedings of the SAREK, pp. 1303-1308.
  4. Sin, H. G., Lee, S. Y., Kim, Y. J. and Park, L. D., 1996, "The Performance Characteristics of Centrifugal Pump with Variations of Impeller Shapes," Proceedings of the KSME 1996 Spring & Fall Annual Meeting, Vol. 1, No. 2, pp. 400-404.
  5. Pyun, K. B., Kim, J. H., Choi, Y. S. and Yoon, J. Y., 2012, "Design Optimization of a Centrifugal Pump Impeller using RSM and Design of Volute," Journal of Fluid machinery, Vol. 15, No. 3,, pp. 39-45. https://doi.org/10.5293/kfma.2012.15.3.039
  6. Park, J. Y., Park, M. R., Hwang, S. C. and Ahn, K. Y., 2010, "Effects of Impeller Blade Thickness on Performance of a Turbo Blower," Journal of Fluid machinery, Vol. 13, No. 4, pp. 5-10. https://doi.org/10.5293/KFMA.2010.13.4.005
  7. Kim, S. M., Park, J. Y., Ahn, K. Y. and Baek, J. H., 2007, "Optimization of a Centrifugal Compressor Impeller and Diffuser using a Response Surface Method," Proceedings of the KSCFE Fall Annual Meeting, pp. 92-99.
  8. Yoo, J. H., Lim, D. H. and Lee, S. M., 2007, "Assessment of Structural Design for Turbocharger Impeller," Proceedings of the KSME 2007 Fall Annual Meeting, pp. 42-47.
  9. Park, T. G., Jung, H. T., Kim, H. B. and Park, J. Y., 2011, "Numerical Study on the Aerodynamic Performance of the Turbo Blower Using Fluid-Structure Interaction Method," Journal of the Korea Society for Power System Engineering, Vol. 15, No. 6, pp. 35-40. https://doi.org/10.9726/kspse.2011.15.6.035
  10. Sayers, A. T., 2009, Basic Theory of Gas Turbines, Chyongundang, Korea, pp. 176-188.
  11. Hong, Y. S., 2000, Hydraulic and compressible flow turbomachines, Chungmungak, Korea, pp. 191-199.
  12. Moon, Y. I., Cho, S. J. and Chun, S. Y., 2003, "Nonparametic Kernel Regression Model for Rating Curve," Journal of Korea Water Resources Association, Vol. 36, No. 6, pp. 1025-1033. https://doi.org/10.3741/JKWRA.2003.36.6.1025
  13. Im, J. B., Ro, Y. H. and Park, J. S., 2006, "An Improved Stochastic Algorithm Using Kriging for Practical Optimal Designs," Journal of The Korean Society for Aeronautical & Space Sciences, Vol. 34, No. 9, pp. 33-44. https://doi.org/10.5139/JKSAS.2006.34.9.033
  14. Huh, S. K., Lee, J. M. and Lee, T. H., 2012, "Sensitivity Validation Technique for Sequential Kriging Metamodel," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 8, pp. 873-879. https://doi.org/10.3795/KSME-A.2012.36.8.873
  15. Cho, S. Y., Lee, Y. D., Ahn, K. Y. and Kim, Y. C., 2013, "A Study on the Design Method to Optimize an Impeller of Centrifugal Compressor," Journal of Fluid machinery, Vol. 16, No. 1, pp. 11-16. https://doi.org/10.5293/kfma.2013.16.1.011
  16. Bardina, J. E., Huang, P. G. and Coakley, T., 1997, "Turbulence modeling validation," 28th AIAA Fluid Dynamics Conference, AIAA-1997-2121.
  17. Jung, Y. H., Baek, J. H., Park, J. Y. and Choi, M. S., 2013, "Effect of Blade Back Sweep Angle on the Performance and Flow Field in a Centrifugal Compressor," Journal of Fluid machinery, Vol. 16, No. 2, pp. 48-53.
  18. Lee, K. K., Han, J. W. and Han, S. H., 2011, "TOPSIS-Based Multi-Objective Shape Optimization for a CRT Funnel," Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 7, pp. 729-736. https://doi.org/10.3795/KSME-A.2011.35.7.729

Cited by

  1. A Study on the Design for the Air Impeller of a Finishing Tool Unit vol.20, pp.3, 2015, https://doi.org/10.7315/CADCAM.2015.312