Browse > Article

Optimization of Culture Medium for Lactosucrose ($^4G-{\beta}$-D-Galactosylsucrose) Production by Sterigmatomyces elviae Mutant Using Statistical Analysis  

Lee, Jong-Ho (Department of Chemical and Biological Engineering, Korea University)
Lim, Jung-Soo (Digital Applicances R&D Team, Samsung Electronics Co. Ltd.)
Song, Yoon-Seok (Department of Chemical and Biological Engineering, Korea University)
Kang, Seong-Woo (Department of Chemical and Biological Engineering, Korea University)
Prak, Chul-Hwan (Department of Chemical Engineering, Kwangwoon University)
Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.12, 2007 , pp. 1996-2004 More about this Journal
Abstract
In this study, the optimization of culture medium using a Sterigmatomyces elviae mutant was investigated using statistical analysis to increase the cell mass and lactosucrose ($^4G-{\beta}$-D-galactosylsucrose) production. In basal medium, the cell mass and lactosucrose production were 4.12 g/l and 140.91 g/l, respectively. However, because of the low cell mass and lactosucrose production, optimization of culture medium was carried out to increase the cell mass and lactosucrose production. Culture media were optimized by the S. elviae mutant using analysis of variance (ANOVA) and response surface methodology (RSM). Central composite designs using RSM were utilized in this investigation. Quadratic models were obtained for cell mass and lactosucrose production. In the case of cell mass, optimal components of the medium were as follows: sucrose 1.13%, yeast extract 0.99%, bactopeptone 2.96%, and ammonium sulfate 0.40%. The predicted maximum value of cell mass was about 5.20 g/l and its experimental value was 5.08 g/l. In the case of lactosucrose production, optimal components of the medium were as follows: sucrose 0.96%, yeast extract 1.2%, bactopeptone 3.0%, and ammonium sulfate 0.48%. Then, the predicted maximum value of lactosucrose production was about 194.12 g/l and the corresponding experimental value was about 183.78 g/l. Therefore, by culturing using predicted conditions, the real cell mass and lactosucrose production increased to 23.3% and 30.42%, respectively.
Keywords
Medium optimization; response surface methodology; lactosucrose; Sterigmatomyces elviae mutant;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Kim, J. D. and C. G. Lee. 2005. Systemic optimization of microalgae for bioactive compound production. Biotechnol. Bioproc. E 10: 418-424   과학기술학회마을   DOI
2 Sunitha, K., J. Lee, and T. Oh. 1999. Optimization of medium components for phytase production by E. coli using response surface methodology. Bioprocess Eng. 21: 477- 481
3 Yun, J. W., K. W. Jung, Y. J. Jeon, and J. H. Lee. 1992. Continuous production of fructo-oligosaccharides from sucrose by immobilized cells of Aureobasidium pullulans. J. Microbiol. Biotechnol. 2: 98-101
4 Teruel, M. L. A., E. Gontier, C. Bienaime, J. E. N. Saucedo, and J. N. Barbotin. 1997. Response surface analysis of chlortetracycline and tetracycline production with K-carrageenan immobilized Streptomyces aureofaciens. Enzyme Microbial Technol. 21: 314-320   DOI   ScienceOn
5 Park, N. H., H. J. Choi, and D. K. Oh. 2005. Lactosucrose production by various microorganisms harboring levansucrase activity. Biotechnol. Lett. 27: 495-497   DOI   ScienceOn
6 Kim, K. A., B. S. Noh, J. K. Lee, S. Y. Kim, Y. C. Park, and D. K. Oh. 2000. Optimization of culture condition for erythritol production by Torula sp. J. Microbiol. Biotechnol. 10: 69-74
7 Seo, H. P., K. I. Jo, C. W. Son, J. K. Yang, C. H. Chung, S. W. Nam, S. K. Kim, and J. W. Lee. 2006. Continuous production of pullulan by Aureobasidium pullulans HP-2001 with feeding of high concentration of sucrose. J. Microbiol. Biotechnol. 16: 374-380   과학기술학회마을
8 Kim, J. M., C. Park, S. W. Kim, and S. Y. Kim. 2006. Flux optimization using genetic algorithms in membrane bioreactor. J. Microbiol. Biotechnol. 16: 863-869   과학기술학회마을
9 Nadeau, D. 2000. The role of short-chain fructooligosaccharides in health and disease. Nutr. Clin. Care 3: 266-273   DOI   ScienceOn
10 Park, H. S., S. H. Kang, H. J. Park, and E. S. Kim. 2005. Dexorubicin productivity improvement by the recombinant Streptomyces peucetius with high-copy regulatory genes cultured in the optimized media composition. J. Microbiol. Biotechnol. 15: 66-71   과학기술학회마을
11 Kozo, H., M. Toshio, S. Shuzo, F. Kohki, T. Yasuhiko, and Y. Masayuki. 1991. Process for preparing lactosucrose highcontent powder and use of said powder. EP 0447125 A1
12 Lee, J. C., K. Na, J. M. Yun, and J. K. Hwang. 2001. In vitro bifidogenic effect of nondigestible oligosaccharides isolated from red ginseng marc. J. Microbiol. Biotechnol. 11: 858- 862
13 Choi, H. J., C. S. Kim, P. Kim, H. C. Jung, and D. K. Oh. 2004. Lactosucrose bioconversion from lactose and sucrose by whole cells of Paenibacillus polymyxa harboring levansucrase activity. Biotechnol. Prog. 20: 1876-1879   DOI   ScienceOn
14 Rivero-Urgell, M. and A. Santamaria-Orleans. 2001. Oligosaccharides: Application in infant food. Early Hum. Dev. 65: 43-52   DOI   ScienceOn
15 Lim, J. S., M. C. Park, J. H. Lee, S. W. Park, and S. W. Kim. 2005. Optimization of culture medium and conditions for neo-fructooligosaccharides production by Penicillium citrinum. Eur. Food Res. Technol. 221: 639-644   DOI   ScienceOn
16 Omar, R., M. A. Abdullah, M. A. Hasan, M. Marziah, and M. K. Siti Mazlina. 2005. Optimization and elucidation of interactions between ammonium nitrate and phosphate in Centella asiatica cell culture using response surface methodology. Biotechnol. Bioproc. E 10: 192-197   과학기술학회마을   DOI
17 Lim, J. S., S. W. Park, J. W. Lee, K. K. Oh, and S. W. Kim. 2005. Immobilization of Penicillium citrinum by entrapping cells in calcium alginate for the production of neo-fructooligosaccharides. J. Microbiol. Biotechnol. 15: 1317-1322   과학기술학회마을
18 Fujita, K., K. Hara, H. Hashimoto, and S. Kitahata. 1990. Transfructosylation catalyzed by ${\beta}$-fructofuranosidase I from Arthrobacter sp. K-1. Agric. Biol. Chem. 54: 2655- 2661   DOI
19 Pilgrim, A., M. Kawase, M. Ohashi, K. Fujita, K. Murakami, and K. Hashimoto 2001. Reaction kinetics and modeling of the enzyme-catalyzed production of lactosucrose using ${\beta}$-fructofuranosidase from Arthrobacter sp. K-1. Biosci. Biotechnol. Biochem. 65: 758-765   DOI   ScienceOn
20 Lee, S. L. and W. C. Chen. 1997. Optimization of medium composition for the production of glucosyltransferase by Aspergillus niger with response surface methodology. Enzyme Microbial Technol. 21: 436-440   DOI   ScienceOn
21 Takahama, A., H. Kuze, S. Okano, T. Akiyama, H. Nakane, H. Takahashi, and T. Kobayashi. 1991. Production of lactosucrose by Bacillus natto levansucrase and some properties of the enzyme. J. Jpn. Soc. Food Sci. Technol. 38: 789-796   DOI
22 Fujita, K., K. Hara, H. Hashimoto, and S. Kitahata. 1990. Purification and some properties of ${\beta}$-fructofuranosidase I from Arthrobacter sp. K-1. Agric. Biol. Chem. 54: 913-919   DOI   ScienceOn