DOI QR코드

DOI QR Code

RSM-based MOALO optimization and cutting inserts evaluation in dry turning of AISI 4140 steel

  • Hamadi, Billel (Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar-Annaba University) ;
  • Yallese, Mohamed Athmane (Mechanics and Structures Research Laboratory (LMS), May 8th 1945 University) ;
  • Boulanouar, Lakhdar (Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar-Annaba University) ;
  • Nouioua, Mourad (Mechanics Research Center (CRM)) ;
  • Hammoudi, Abderazek (Mechanics Research Center (CRM))
  • Received : 2021.12.13
  • Accepted : 2022.08.10
  • Published : 2022.10.10

Abstract

An experimental study is carried out to investigate the performance of the cutting tool regarding the insert wear, surface roughness, cutting forces, cutting power and material removal rate of three coated carbides GC2015 (TiCN-Al2O3-TiN), GC4215 (Al2O3-Ti(C,N)) and GC1015 (TiN) during the dry turning of AISI4140 steel. For this purpose, a Taguchi design (L9) was adopted for the planning of the experiments, the effects of cutting parameters on the surface roughness (Ra), tangential cutting force (Fz), the cutting power (Pc) and the material removal rate (MRR) were studied using analysis of variance (ANOVA), the response surface methodology (RSM) was used for mathematical modeling, with which linear mathematical models were developed for forecasting of Ra, Fz, Pc and MRR as a function of cutting parameters (Vc, f, and ap). Then, Multi-Objective Ant Lion Optimizer (MOALO) has been implemented for multi-objective optimization which allows manufacturers to enhance the production performances of the machined parts. Furthermore, in order to characterize and quantify the flank wear of the tested tools, some machining experiments were performed for 5 minutes of turning under a depth of 0.5 mm, a feed rate of 0.08 mm/rev, and a cutting speed of 350 m/min. The wear results led to a ratio (VB-GC4215/VB-GC2015) of 2.03 and (VB-GC1015/VB-GC2015) of 4.43, thus demonstrating the efficiency of the cutting insert GC2015. Moreover, SEM analysis shows the main wear mechanisms represented by abrasion, adhesion and chipping.

Keywords

Acknowledgement

This work was achieved in the Mechanics and Structures Research Laboratory (LMS), May 8th 1945 University, Guelma, Algeria in collaboration with the Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar-Annaba University, Algeria. The authors would like to thank the Research Centre in Industrial Technologies and the Thin Films Development and Applications Unit for their assistance.

References

  1. Aouici, H., Elbah, M., Yallese, M.A., Fnides, B., Meddour, I. and Benlahmidi, S. (2016a), "Performance comparison of wiper and conventional ceramic inserts in hard turning of AISI 4140 steel: Analysis of machining forces and flank wear", Int. J. Adv. Manuf. Technol., 87(5-8), 2221-2244. https://doi.org/10.1007/s00170-016-8567-7.
  2. Aouici, H., Fnides, B., Elbah, M., Benlahmidi, S., Bensouilah, H. and Yallese, M.A. (2016b), "Surface roughness evaluation of various cutting materials in hard turning of AISI H11", Int. J. Ind. Eng. Comput., 7(2), 339-352. https://doi.org/10.5267/j.ijiec.2015.9.002.
  3. Aurich, J.C., Eyrisch, T. and Zimmermann, M. (2012), "Effect of the coating system on the tool performance when turning heat treated AISI 4140", Procedia CIRP, 1, 214-219. https://doi.org/10.1016/j.procir.2012.04.037.
  4. Bensouilah, H., Aouici, H., Meddour, I., Yallese, M.A., Mabrouki, T. and Girardin, F. (2016), "Performance of coated and uncoated mixed ceramic tools in hard turning process", Measure., 82, 1-18. https://doi.org/10.1016/j.measurement.2015.11.042.
  5. Bouacha, K., Yallese, M.A., Khamel, S. and Belhadi, S. (2014), "Analysis and optimization of hard turning operation using cubic boron nitride tool", Int. J. Refrac. Metal. Hard Mater., 45, 160-178. https://doi.org/10.1016/j.ijrmhm.2014.04.014.
  6. Bouchelaghem, H., Yallese, M., Mabrouki, T., Amirat, A. and Rigal, J.F. (2010), "Experimental investigation and performance analyses of CBN insert in hard turning of cold work tool steel (D3)", Mach. Sci. Technol., 14(4), 471-501. https://doi.org/10.1080/10910344.2010.533621.
  7. Bouchelaghem, H., Yallese, M.A., Amirat, A. and Belhadi, S. (2007), "Wear behaviour of CBN tool when turning hardened AISI D3 steel", Mech., 65(3), 57-65. https://doi.org/10.5755/j01.mech.65.3.14804.
  8. Boucherit, S., Berkani, S., Yallese, M.A., Khettabi, R. and Mabrouki, T. (2020), "Modeling and optimization of cutting parameters during machining of austenitic stainless steel AISI304 using RSM and desirability approach", Period. Polytech. Mech. Eng., 65(1), 10-26. https://doi.org/10.3311/PPme.12241.
  9. Cassier, Z., Prato, Y. and Munoz-Escalona, P. (2004), "Built-up edge effect on tool wear when turning steels at low cutting speed", J. Mater. Eng. Perform., 13(5), 542-547. https://doi.org/10.1361/10599490420629.
  10. Chabbi, A., Yallese, M., Nouioua, M., Meddour, I., Mabrouki, T. and Girardin, F. (2017), "Modeling and optimization of turning process parameters during the cutting of polymer (POM C) based on RSM, ANN, and DF methods", Int. J. Adv. Manuf. Technol., 91(5-8), 2267-2290. https://doi.org/10.1007/s00170-016-9858-8.
  11. Choudhary, A. and Paul, S. (2019), "Performance evaluation of PVD TIALN coated carbide tools vis-a-vis uncoated carbide tool in turning of titanium alloy (Ti-6Al-4V) by simultaneous minimization of cutting energy, dimensional deviation and tool wear", Mach. Sci. Technol., 23(3), 1-17. https://doi.org/10.1080/10910344.2018.1486421.
  12. Das, A., Das, S.R., Panda, A. and Patel, S.K. (2022a), "Experimental investigation into machinability of hardened AISI D6 steel using newly developed AlTiSiN coated carbide tools under sustainable finish dry hard turning", Proc. Inst. Mech. Eng. E: J. Proc Mech. Eng., 236(5), 09544089221078137. https://doi.org/10.1177/09544089221078137.
  13. Das, A., Gupta, M.K., Das, S.R., Panda, A., Patel, S.K. and Padhan, S. (2022b), "Hard turning of AISI D6 steel with recently developed HSN2-TiAlxN and conventional TiCN coated carbide tools: comparative machinability investigation and sustainability assessment", J. Brazil. Soc. Mech. Sci. Eng., 44(4), 1-25. https://doi.org/10.1007/s40430-022-03445-7.
  14. Das, S.R., Dhupal, D. and Kumar, A. (2015), "Study of surface roughness and flank wear in hard turning of AISI 4140 steel with coated ceramic inserts", J. Mech. Sci. Technol., 29, 4329-4340. https://doi.org/10.1007/s12206-015-0931-2.
  15. Dash, L., Padhan, S. and Das, S.R. (2020), "Design optimization for analysis of surface integrity and chip morphology in hard turning", Struct. Eng. Mech., 76(5), 561-578. https://doi.org/10.12989/sem.2020.76.5.561.
  16. Elbah, M., Yallese, M.A., Aouici, H., Mabrouki, T. and Rigal, J.F. (2013), "Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel", Measure., 46(9), 3041-3056. https://doi.org/10.1016/j.measurement.2013.06.018.
  17. Gaitonde, V., Karnik, S., Figueira, L. and Davim, J.P. (2009), "Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts", Int. J. Refract. Metals. Hard. Mater., 27(4), 754-763. https://doi.org/10.1016/j.ijrmhm.2008.12.007.
  18. Hessainia, Z., Belbah, A., Yallese, M.A., Mabrouki, T. and Rigal, J.F. (2013), "On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations", Measure., 46(5), 1671-1681. https://doi.org/10.1016/j.ijrmhm.2008.12.007.
  19. Hessainia, Z., Yallese, A., Bouzid, L. and Mabrouki, T. (2015), "On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert", Int. J. Ind. Eng. Comput., 6(2), 267-284. https://doi.org/10.5267/j.ijiec.2014.10.003.
  20. Keblouti, O., Boulanouar, L., Azizi, M.W. and Bouziane, A. (2019), "Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration", Struct. Eng. Mech., 70(4), 395-405. https://doi.org/10.12989/sem.2019.70.4.395.
  21. Keblouti, O., Boulanouar, L., Azizi, M.W. and Yallese, M.A. (2017), "Effects of coating material and cutting parameters on the surface roughness and cutting forces in dry turning of AISI 52100 steel", Struct. Eng. Mech., 61(4), 519-526. https://doi.org/10.12989/sem.2017.61.4.519.
  22. Khellaf, A., Aouici, H., Smaiah, S., Boutabba, S., Yallese, M.A. and Elbah, M. (2017), "Comparative assessment of two ceramic cutting tools on surface roughness in hard turning of AISI H11 steel: Including 2D and 3D surface topography", Int. J. Adv. Manufact. Technol., 89(1-4), 333-354. https://doi.org/10.1007/s00170-016-9077-3.
  23. Laouissi, A., Yallese, M.A., Belbah, A., Khellaf, A. and Haddad, A. (2019), "Comparative study of the performance of coated and uncoated silicon nitride (Si3N4) ceramics when machining EN-GJL-250 cast iron using the RSM method and 2D and 3D roughness functional parameters", J. Brazil. Soc. Mech. Sci. Eng., 41(5), 205. https://doi.org/10.1007/s40430-019-1708-9.
  24. Luo, S., Liao, Y. and Tsai, Y. (1999), "Wear characteristics in turning high hardness alloy steel by ceramic and CBN tools", J. Mater. Proc. Technol., 88(1-3), 114-121. https://doi.org/10.1016/S0924-0136(98)00376-8.
  25. Mikolajczyk, T. (2014), "Modeling of minimal thickness cutting layer influence on surface roughness in turning", Appl. Mech. Mater., 656, 262-269. https://doi.org/10.4028/www.scientific.net/AMM.656.262.
  26. Mikolajczyk, T., Nowicki, K., Bustillo, A. and Pimenov, D.Y. (2018), "Predicting tool life in turning operations using neural networks and image processing", Mech. Syst. Signal Pr., 104, 503-513. https://doi.org/10.1016/j.ymssp.2017.11.022.
  27. Mikolajczyk, T., Nowicki, K., Klodowski, A. and Pimenov, D.Y. (2017), "Neural network approach for automatic image analysis of cutting edge wear", Mech. Syst. Signal Pr., 88, 100-110. https://doi.org/10.1016/j.ymssp.2016.11.026.
  28. Mir, M. and Wani, M. (2018), "Modelling and analysis of tool wear and surface roughness in hard turning of AISI D2 steel using response surface methodology", Int. J. Ind. Eng. Comput., 9(1), 63-74. https://doi.org/10.5267/j.ijiec.2017.4.004.
  29. Mirjalili, S. (2015), "The ant lion optimizer", Adv. Eng. Softw., 83, 80-98. https://doi.org/10.1016/j.advengsoft.2015.01.010.
  30. Mirjalili, S., Jangir, P. and Saremi, S. (2017), "Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems", Appl. Intel., 46(1), 79-95. https://doi.org/10.1007/s10489-016-0825-8.
  31. Noordin, M.Y., Venkatesh, V.C., Sharif, S., Elting, S. and Abdullah, A. (2004), "Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel", J. Mater. Proc. Technol., 145(1), 46-58. https://doi.org/10.1016/S0924-0136(03)00861-6.
  32. Paese, E., Geier, M., Rodrigues, F.R., Mikolajczyk, T. and Mia, M. (2020), "Assessment of CVD-and PVD-coated carbides and PVD-coated cermet inserts in the optimization of surface roughness in turning of AISI 1045 steel", Mater., 13(22), 5231. https://doi.org/10.3390/ma13225231.
  33. Panda, A., Sahoo, A. and Rout, A. (2017), "Statistical regression modeling and machinability study of hardened AISI 52100 steel using cemented carbide insert", Int. J. Ind. Eng. Comput., 8(1), 33-44. https://doi.org/10.5267/j.ijiec.2016.7.004.
  34. Posti, E. and Nieminen, I. (1989), "Influence of coating thickness on the life of TiN-coated high speed steel cutting tools", Wear, 129(2), 273-283. https://doi.org/10.1016/0043-1648(89)90264-0.
  35. Ross, P.J. (1988), Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design, McGraw-Hill New York.
  36. Sahoo, A.K. and Sahoo, B. (2012), "Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts", Measure., 45(8), 2153-2165. https://doi.org/10.1016/j.measurement.2012.05.015.
  37. Sahoo, A.K. and Sahoo, B. (2013), "Performance studies of multilayer hard surface coatings (TiN/TiCN/Al2O3/TiN) of indexable carbide inserts in hard machining: Part-II (RSM, grey relational and techno economical approach)", Measure., 46(8), 2868-2884. https://doi.org/10.1016/j.measurement.2013.03.024.
  38. Sahoo, A.K., Panda, A., Kumar, R., Das, R.K. and Das, D. (2018), "Investigation on machinability characteristics during turning Al6063 alloy using uncoated carbide insert", Mater. Today-Proc., 5(9), 18120-18128. https://doi.org/10.1016/j.matpr.2018.06.147.
  39. Sales, W., Costa, L., Santos, S., Diniz, A., Bonney, J. and Ezugwu, E. (2009), "Performance of coated, cemented carbide, mixed-ceramic and PCBN-H tools when turning W320 steel", Int. J. Adv. Manufact. Technol., 41(7-8), 660-669. https://doi.org/10.1007/s00170-008-1523-4.
  40. Selvaraj, D.P., Chandramohan, P. and Mohanraj, M. (2014), "Optimization of surface roughness, cutting force and tool wear of nitrogen alloyed duplex stainless steel in a dry turning process using Taguchi method", Measure., 49, 205-215. https://doi.org/10.1016/j.measurement.2013.11.037.
  41. Senthilkumar, N., Tamizharasan, T. and Gobikannan, S. (2014), "Application of response surface methodology and firefly algorithm for optimizing multiple responses in turning AISI 1045 steel", Arab. J. Sci. Eng., 39(11), 8015-8030. https://doi.org/10.1007/s13369-014-1320-3.
  42. Suresh, R., Basavarajappa, S. and Samuel, G. (2012), "Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool", Measure., 45(7), 1872-1884. https://doi.org/10.1016/j.measurement.2012.03.024.
  43. Tebassi, H., Yallese, M.A., Khettabi, R., Belhadi, S., Meddour, I. and Girardin, F. (2016), "Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718", Int. J. Ind. Eng. Comput., 7(1), 111-134. https://doi.org/10.5267/j.ijiec.2015.7.003.
  44. Thakur, A., Gangopadhyay, S., Maity, K.P. and Sahoo, S.K. (2016), "Evaluation on effectiveness of CVD and PVD coated tools during dry machining of incoloy 825", Tribol. Trans., 59(6), 1048-1058. https://doi.org/10.1080/10402004.2015.1131350.
  45. Yallese, M., Rigal, J., Chaoui, K. and Boulanouar, L. (2005), "The effects of cutting conditions on mixed ceramic and cubic boron nitride tool wear and on surface roughness during machining of X200Cr12 steel (60 HRC)", P. I. Mech. Eng. B-J. Eng., 219(1), 35-55. https://doi.org/10.1243/095440505X8082.
  46. Yallese, M.A., Chaoui, K., Zeghib, N., Boulanouar, L. and Rigal, J.F. (2009), "Hard machining of hardened bearing steel using cubic boron nitride tool", J. Mater. Proc. Technol., 209(2), 1092-1104. https://doi.org/10.1016/j.jmatprotec.2008.03.014.