• Title/Summary/Keyword: RSM : 반응표면법

Search Result 418, Processing Time 0.032 seconds

Statistical Analysis of The Influence of Inorganic Anions on MTBE Decomposition by Photolysis(UV/H2O2) (광분해반응을 통한 MTBE 분해 시 음이온 영향의 통계적 분석)

  • Chun, Sukyoung;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.57-62
    • /
    • 2011
  • This study investigated the effects of various inorganic anions($Cl^-$, $NO_3{^-}$, $HCO_3{^-}$) on the Methyl tert Butyl Ether(MTBE) degradation by photocatalysis using statistical method. Generally, this process in general demands the generation of hydroxyl radicals(OH radical) in solution in the presence of UV light. The generation of radicals were affected by inorganic anions in solution that inhibited the photodegradation by their trapping hydroxyl radicals. The effects of inorganic anions were mathematically described as the independent variables such as $Cl^-$, $NO_3{^-}$, and $HCO_3{^-}$, and these were designed by mixture analysis that was one of the response surface methodology(RSM). Regression analysis on ANOVA showed significant p-value(p<0.0001) and high coefficients for determination value($R^2$=99.28%, ${R^2}_{adj}$=98.91%). Contour and response surface plots showed that the effects of inorganic anions for MTBE photodegradation based on $UV/H_2O_2$ process. In the result, $Cl^-$ and $HCO_3{^-}$ inhibited the photodegradation of the MTBE by their trapping hydroxyl radicals, and the interaction by these two factors was observed.

An efficient Reliability Analysis Method Based on The Design of Experiments Augmented by The Response Surface Method (실험계획법과 반응표면법을 이용한 효율적인 신뢰도 기법의 개발)

  • 이상훈;곽병만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.700-703
    • /
    • 2004
  • A reliability analysis and design procedure based on the design of experiment (DOE) is combined with the response surface method (RSM) for numerical efficiency. The procedure established is based on a 3$^n$ full factorial DOE for numerical quadrature using explicit formula of optimum levels and weights derived for general distributions. The full factorial moment method (FFMM) shows good performance in terms of accuracy and ability to treat non-normally distributed random variables. But, the FFMM becomes very inefficient because the number of function evaluation required increases exponentially as the number of random variables considered increases. To enhance the efficiency, the response surface moment method (RSMM) is proposed. In RSMM, experiments only with high probability are conducted and the rest of data are complemented by a quadratic response surface approximation without mixed terms. The response surface is updated by conducting experiments one by one until the value of failure probability is converged. It is calculated using the Pearson system and the four statistical moments obtained from the experimental data. A measure for checking the relative importance of an experimental point is proposed and named as influence index. During the update of response surface, mixed terms can be added into the formulation.

  • PDF

Optimization of Stress and Deformation of Culvert Gate by using RSM and NSGA-II (반응표면법 및 비지배 분류 유전자 알고리즘을 이용한 취배수문의 응력 및 변형 최적화)

  • Kim, Dong Soo;Lee, Jongsoo;Choi, Ha-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.27-32
    • /
    • 2013
  • A valve is a marine structure that is subjected to multiple seawater loads. Therefore, it is necessary to define the kind of loads applied to it to confirm whether the structure has sufficient strength. In this research, we aimed to find the optimal solution for the stress and deformation of valves under various loads. We first selected design variables and implement a finite element analysis according to changes in the thickness of each component of a valve based on a central composite design. Next we developed a regression model of the response surface. Using this model, we calculated the optimal objective value based on NSGA-II. Finally, to confirm the correspondence between the optimal objective value and the real FEM value, we compared the optimal result and structural analysis result to verify the performance of NSGA-II.

Linear actuator design for high attraction force at middle stroke (Middle stroke에서 흡입력 향상을 위한 선형 엑추에이터의 설계)

  • Han, Dong-Ki;Chang, Jung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.910-911
    • /
    • 2015
  • 본 논문에서는 COL, MPS타입의 선형 엑추에이터에서 middle stroke의 흡입력 향상을 위해 고정부에 돌극을 추가하는 모델을 제시하였다. 기존 모델과 비교하여 제안된 모델의 효과를 검증 하였으며 middle stroke에서 더 큰 힘을 얻기 위해 주효과분석과 반응표면법(RSM)을 이용하여 돌극 형상의 최적설계를 수행하였다.

  • PDF

Optimal Design for the Thermal Deformation of Disk Brake by Using Design of Experiments and Finite Element Analysis (실험계획법과 유한요소해석에 의한 디스크 브레이크의 열변형 최적설계)

  • Lee, Tae-Hui;Lee, Gwang-Gi;Jeong, Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1960-1965
    • /
    • 2001
  • In the practical design, it is important to extract the design space information of a complex system in order to optimize the design because the design contains huge amount of design conflicts in general. In this research FEA (finite element analysis) has been successfully implemented and integrated with a statistical approach such as DOE (design of experiments) based RSM (response surface model) to optimize the thermal deformation of an automotive disk brake. The DOE is used for exploring the engineer's design space and for building the RSM in order to facilitate the effective solution of multi-objective optimization problems. The RSM is utilized as an efficient means to rapidly model the trade-off among many conflicting goals existed in the FEA applications. To reduce the computational burden associated with the FEA, the second-order regression models are generated to derive the objective functions and constraints. In this approach, the multiple objective functions and constraints represented by RSM are solved using the sequential quadratic programming to archive the optimal design of disk brake.

Optimization of KOH pretreatment conditions from Miscanthus using high temperature and extrusion system (고온 압출식 반응시스템을 이용한 억새 바이오매스의 KOH 전처리조건 최적화)

  • Cha, Young-Lok;Park, Sung-Min;Moon, Youn-Ho;Kim, Kwang-Soo;Lee, Ji-Eun;Kwon, Da-Eun;Kang, Yong-Gu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1243-1252
    • /
    • 2019
  • The purpose of this study is to investigate the optimum conditions of biomass pretreatment with potassium hydroxide (KOH) for efficient utilization of cellulose, hemicellulose and lignin from Miscanthus. The optimization of variables was performed by response surface methodology (RSM). The variation ranges of the parameters for the RSM were potassium hydroxide 0.2~0.8 M, reaction temperature 110~190℃ and reaction time 10~90 min. The optimum conditions of alkali pretreatment from Miscanthus were determined as follows: concentration of KOH 0.47 M, reaction temperature 134℃ and reaction time 65 min. At the optimum conditions, the yield of cellulose from the solid fraction after pretreatment was predicted to be 95% by model prediction. Finally, 66.1 ± 1.1% of cellulose were obtained by verification experiment under the optimum conditions. The order contents of solid extraction were hemicellulose 26.4 ± 0.4%, lignin 3.7 ± 0.1% and ash 0.5 ± 0.04%. The yield of ethanol concentration of 96% was obtained using separated saccharification and fermentation.

Structure Optimization of Double-Sided Iron-Core Type Permanent Magnet Linear Synchronous Machine Using Response Surface Method (반응표면법을 이용한 양측 철심형 영구자석 선형 동기기의 구조 최적화)

  • Lee, Sang-Geon;Zhu, Yu-Wu;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1210-1211
    • /
    • 2011
  • The inherent drawback of iron-core type permanent magnet linear synchronous motor (PMLSM) is detent force that is dependent on several major factors such as PM length, slot clearance, and skewing. To minimize the detent force, this paper proposes a structure optimization using the combination computation of two dimensional (2-D) finite element analysis (FEA) and response surface methodology (RSM). The RSM, that is a collection of the statistical and mathematical techniques, is utilized to predict the global optimal solution based on the FEA calculated results of the detect forces for different combinations of factors. With the help of the combination computation the high capacity iron-core type PMLSM with more than 12000 N propulsion forces only contains less than 3 N detent forces.

  • PDF

Optimal Design of Synchronous Reluctance Motor by Loss & Efficiency Evaluations Related to Slot Number using Response Surface Methodology (반응표면법을 이용한 슬롯수 관련 손실, 효율 평가애 따른 동기형 릴럭턴스 전동기의 최적 설계)

  • Park, Seong-June;Jang, Young-Jin;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.123-125
    • /
    • 2004
  • This paper presents the application of response surface methodology (RSM) to design optimization for two types of synchronous reluctance motors (SynRMs); one has 12 slots with distributed winding, and the other has 6 slots with concentrated winding, to improve the ratio between torque ripple and average torque. The usefulness of RSM in optimization problem of SynRM is verified as compared with the results of finite element analysis. In the end, the optimized two SynRMs are compared with SynRM currently used in air-conditioning compressor in connection with torque performance and loss.

  • PDF

Permanent Magnet Optimization for Reduction of Cogging Torque of BLDC Motor using Response Surface Methodology (반응표면법을 이용한 코깅 토크 저감을 위한 BLDC 모터의 자석 최적설계)

  • Lee, Jang-Won;Shim, Ho-Kyung;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.202-205
    • /
    • 2008
  • This paper presents an optimization of permanent magnet (PM) in a brushless dc (BLDC) motor using the response surface methodology (RSM). Size and angle of the PM are optimized to minimize the cogging torque, while reducing the magnitude of harmonic at a dominant frequency and maintaining the operating torque. A fitted RS model is constructed by verifying the high reliability of the total variation and the variation of estimated error. The optimized design is validated by carrying out the reanalysis and comparing to the initial model using the nonlinear transient finite element analysis.

  • PDF

Operating Characteristics of Internal Heat Exchanger for $CO_2$ Geothermal Heat Pump in the Heating Mode (난방모드 시 $CO_2$ 지열히트펌프의 내부열교환기에 대한 운전특성)

  • Kim, Jae-Duck;Lee, Sang-Jae;Kim, Seon-Chang;Kim, Young-Lyoul
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1226-1231
    • /
    • 2009
  • This paper presents operating characteristics of internal heat exchanger(IHX) for $CO_2$ geothermal heat pump in the heating mode. Mass flow rate of $CO_2$, inlet temperatures of $CO_2$ at high and low pressure side were selected as main effect factors by using fractional factorial DOE(Design of Experiments). And RSM(Response Surface Method) was used in optimization phase. The results show that heat transfer rate of IHX increases when either inlet temperature of low pressure side decreases or inlet temperature of high pressure side increases. Effectiveness of IHX increases with increasing of inlet temperature of either high pressure side or low pressure side. Finally, performance contour map was provided over the operation ranges of the main design factors.

  • PDF