• Title/Summary/Keyword: RNase A

Search Result 128, Processing Time 0.03 seconds

Molecular Cloning, Purification, and Characterization of an Extracellular Nuclease from Aeromonas hydrophila ATCC14715

  • Nam, In-Young;Myung, Hee-Joon;Joh, Ki-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.178-181
    • /
    • 2004
  • A gene encoding an extracellular nuclease was cloned from Aeromonas hydrophila strain ATCC14715. The gene was overexpressed and the enzyme was purified by fusing to maltose binding protein. It was shown that the protein possessed DNase activity on both single-stranded and double-stranded DNAs. It exhibited both endo- and exonuclease activities. It was also shown that the protein had an RNase activity. Possible roles of this extracellular enzyme in the A. hydrophila life cycle are discussed.

Secondary Structure for RNA Aptamers Binding to Guanine-Rich Sequence in the 5'-UTR RNA of N-Ras Oncogene

  • Cho, Bongrae
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.121-124
    • /
    • 2021
  • RNA molecules which bind to the G-rich sequence in the 5'-UTR RNA which plays an important role in expression of N-ras, were selected. The secondary structures of five selected RNA aptamers including primer sequence were found by the CLC RNA workbench ver. 4.2 program (www.clcbio.com) and investigated with RNA structural probes such as RNase T1 which has specificity for a G in single-stranded region, RNase V1 specific for double strand and nuclease S1 specific for single strand. The generalized secondary structure model was proposed and characterized. It was composed of a central long double strand region flanked by single strand region at both end sides. The double strand region had an internal single-strand region and bulges. The single strand loop in the right side was composed of four or five nucleotides.

Characterization of Echinostoma cinetorchis endoribonuclease, RNase H

  • Lim, Sung-Bin;Cha, Seok Ho;Jegal, Seung;Jun, Hojong;Park, Seo Hye;Jeon, Bo-Young;Pak, Jhang Ho;Bakh, Young Yil;Kim, Tong-Soo;Lee, Hyeong-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.4
    • /
    • pp.451-455
    • /
    • 2017
  • Echinostoma cinetorchis is an oriental intestinal fluke causing significant pathological damage to the small intestine. The aim of this study was to determine a full-length cDNA sequence of E. cinetorchis endoribonuclease (RNase H; EcRNH) and to elucidate its molecular biological characters. EcRNH consisted of 308 amino acids and showed low similarity to endoribonucleases of other parasites (<40%). EcRNH had an active site centered on a putative DDEED motif instead of DEDD conserved in other species. A recombinant EcRNH produced as a soluble form in Escherichia coli showed enzymatic activity to cleave the 3'-O-P bond of RNA in a DNA-RNA duplex, producing 3'-hydroxyl and 5'-phosphate. These findings may contribute to develop antisense oligonucleotides which could damage echinostomes and other flukes.

Mutational Analysis of an Essential RNA Stem-loop Structure in a Minimal RNA Substrate Specifically Cleaved by Leishmania RNA Virus 1-4 (LRV1-4) Capsid Endoribonuclease

  • Ro, Youngtae;Patterson, Jean L.
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.239-247
    • /
    • 2003
  • The LRV1-4 capsid protein possesses an endoribonuclease activity that is responsible for the single site-specific cleavage in the 5' untranslated region (UTR) of its own viral RNA genome and the formation of a conserved stem-loop structure (stem-loop IV) in the UTR is essential for the accurate RNA cleavage by the capsid protein. To delineate the nucleotide sequences, which are essential for the correct formation of the stem-loop structure for the accurate RNA cleavage by the viral capsid protein, a wildtype minimal RNA transcript (RNA 5' 249-342) and several synthetic RNA transcripts encoding point-mutations in the stem-loop region were generated in an in vitro transcription system, and used as substrates for the RNA cleavage assay and RNase mapping studies. When the RNA 5' 249-342 transcript was subjected to RNase T1 and A mapping studies, the results showed that the predicted RNA secondary structure in the stem-loop region using FOLD analysis only existed in the presence of Mg$\^$2+/ ions, suggesting that the metal ion stabilizes the stem-loop structure of the substrate RNA in solution. When point-mutated RNA substrates were used in the RNA cleavage assay and RNase T1 mapping study, the specific nucleotide sequences in the stem-loop region were not required for the accurate RNA cleavage by the viral capsid protein, but the formation of a stem-loop like structure in a region (nucleotides from 267 to 287) stabilized by Mg$\^$2+/ ions was critical for the accurate RNA cleavage. The RNase T1 mapping and EMSA studies revealed that the Ca$\^$2+/ and Mn$\^$2+/ ions, among the reagents tested, could change the mobility of the substrate RNA 5' 249-342 on a gel similarly to that of Mg$\^$2+/ ions, but only Ca$\^$2+/ ions identically showed the stabilizing effect of Mg$\^$2+/ ions on the stem-loop structure, suggesting that binding of the metal ions (Mg$\^$2+/ or Ca$\^$2+/) onto the RNA substrate in solution causes change and stabilization of the RNA stem-loop structure, and only the substrate RNA with a rigid stem-loop structure in the essential region can be accurately cleaved by the LRV1-4 viral capsid protein.

Adverse Interfacial Effects upon Protein Stability: Implications in Developing Emulsion-Based Protein Delivery Systems

  • Sah, Hongkee
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.146-148
    • /
    • 2001
  • The objective of this study was to investigate the behavior of ribonuclease A (RNase) at the water/methylene chloride interface. It was aimed at better understanding the denaturation of proteins upon emulsification. RNase was vulnerable to the interface-induced aggregation reactions that led to formation of water-insoluble aggregates upon emulsification. Biochemical analyses demonstrated that intermolecular covalent linkages might have been involved in the aggregation reactions. The protein instability observed with emulsification was traced to consequences of protein adsorption and conformational rearrangements at the interface. These results indicated that emulsifying aqueous protein solutions in organic solvents should be handled with care, since emulsification could bring denaturation and aggregation to proteins.

  • PDF

Improved Detection of Viable Escherichia coli O157:H7 in Milk by Using Reverse Transcriptase-PCR

  • Choi, Suk-Ho;Lee, Seung-Bae
    • Food Science of Animal Resources
    • /
    • v.31 no.2
    • /
    • pp.158-165
    • /
    • 2011
  • A sensitive reverse transcriptase-PCR (RT-PCR) method to detect viable Escherichia coli O157:H7 in milk was established. The primer sets were designed based on the nucleotide sequences of the rfbE (per) and wbdN genes in the O157 antigen gene cluster of E. coli O157:H7. RT-PCR using five different primer sets yielded DNA with sizes of 655, 518, 450, and 149-bp, respectively. All five of the E. coli O157:H7 strains were detected by RT-PCR, but 11 other bacterial species were not. The sensitivity of RT-PCR was improved by adding yeast tRNA as a carrier to the crude RNA extract. The RT-PCR amplifying the 149-bp DNA fragment was the most sensitive for detecting E. coli O157:H7 and the most refractory to the bactericidal treatments. Heat treatment at $65^{\circ}C$ for 30 min was the least inhibitory of all bactericidal treatments. Treatment with RNase A strongly inhibited the RT-PCR of heated milk but not unheated milk. This study described RT-PCR methods that are specific and sensitive with a detection limit of 10 E. coli O157:H7 cells, and showed that pre-treating milk samples with RNase A improved the specificity to detect viable bacteria by RT-PCR.

Expression of a Small Protein Encoded by the 3' Flanking Sequence of the Escherichia coli rnpB Gene

  • Kim, Yool;Han, Kook;Lee, Jung-Min;Kim, Kwang-Sun;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.1010-1014
    • /
    • 2007
  • M1 RNA is the catalytic component of RNase P, a tRNA-processing enzyme in Escherichia coli. M1 RNA is produced in the cell by transcription of the rnpB gene and subsequent processing at the 3' end. The 3' flanking region of rnpB contains repeated sets of overlapping sequences coding for small proteins. The issue of whether these proteins are expressed remains to be established. In this study, we showed the expression of a small protein encoded by the first repeat within the 3' flanking region of rnpB. Interestingly, protein expression was increased at lower temperatures. The termination efficiency of rnpB terminators was decreased at lower temperatures, suggesting that antitermination is responsible for enhanced protein expression. Moreover, the purified small protein contained M1 RNA, implying a role as a specific RNA-binding protein.

CRISPR as a strong gene editing tool

  • Shen, Shengfu;Loh, Tiing Jen;Shen, Hongling;Zheng, Xuexiu;Shen, Haihong
    • BMB Reports
    • /
    • v.50 no.1
    • /
    • pp.20-24
    • /
    • 2017
  • Clustered regularly-interspaced short palindromic repeats (CRISPR) is a new and effective genetic editing tool. CRISPR was initially found in bacteria to protect it from virus invasions. In the first step, specific DNA strands of virus are identified by guide RNA that is composed of crRNA and tracrRNA. Then RNAse III is required for producing crRNA from pre-crRNA. In The second step, a crRNA:tracrRNA:Cas9 complex guides RNase III to cleave target DNA. After cleavage of DNA by CRISPR-Cas9, DNA can be fixed by Non-Homologous End Joining (NHEJ) and Homology Directed Repair (HDR). Whereas NHEJ is simple and random, HDR is much more complex and accurate. Gene editing by CRISPR is able to be applied to various biological field such as agriculture and treating genetic diseases in human.

Complementary DNA Cloning of Genomic RNA in Orchid Strain of Tobacco Mosaic Virus

  • Won Mok Park
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.349-355
    • /
    • 1994
  • Viral RNA was extracted from a purified orchid strain of tobacco mosaic virus (TMV-O) from Cymbidium "Grace Kelly". Polyadenylated viral RNAs were primed with Not I-oligo (dT) primer-adapter. First-strand cDNAs were reversely transcribed by Moloney murine leukaemia virus reverse transcriptase (RNAse H-), and then second-strand cDNAs were synthesized by RNase H and DNA polymerase I. The resulting double-stranded cDNAs were ligated into pSPORT1 vector and transformed into competent E. coli strain JM109 cells. The size of cDNAs within the recombinant plasmids was ranging from 0.9 to 3.9 kb. Among the selected clones, pTMO-0205 and -0210 covered the 3' half and the 5' half of the viral genomic RNA, respectively, which were covering more than 99% of the viral genemo size based on sequencing analysis. Two cDNA fragments which were 3.1 kb BamHI and NotI fragement released from pTMO-0.205 and 3.3 kb SalI and BamHI fragment released from pTMO-0210 were ligated with T4 DNA ligase. The clone was almost entire length, lacking only 31 nucleotides from the 5' terminus based on the sequencing result. This method was shown to be efficiently applicable to other plant viral gnomic RNA for the construction of cDNA.n of cDNA.

  • PDF

Identification of Self-incompatibility Genotypes of Apricot (Prunus armeniaca L.) by PCR and Test Crosses

  • Jun, Ji Hae;Nam, Eun Young;Kwon, Jung Hyun;Chung, Kyeong Ho;Yoon, Ik-Koo;Yun, Seok-Kyu;Shin, Yong-Uk;Kwon, Soon Il
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.368-374
    • /
    • 2011
  • Apricot (Prunus armeniaca L.) cultivars show a gametophytic self-incompatibility (GSI) system, like other fruit species of Rosaceae family. Thus, it is necessary to determine their S-genotypes in order for stable fruit set in commercial cultivation. S-genotypes of apricots were determined by PCR and test crosses. Three sets of consensus primers designed from Prunus S-RNases were used to amplify fragments containing the first and second S-RNase intron, respectively. Through the results obtained from the 3 PCRs, we could identify SI genotypes of 33apricot cultivars. Several cultivars such as 'Heiwa', 'Yamagata No.3' and 'Shinsuoomi' had the self-compatible (Sc) allele. Self-pollination tests revealed that cultivars with Sc allele were self-compatible. Cross-pollination tests confirmed that there was cross-incompatibility between the cultivars with the same S-genotypes. These results might be very useful for growers for effective pollination and for breeders using these in cross breeding programs.