• Title/Summary/Keyword: RNA degradation

Search Result 424, Processing Time 0.027 seconds

Historical Overview of the Effect of β-Adrenergic Agonists on Beef Cattle Production

  • Johnson, Bradley J.;Smith, Stephen B.;Chung, Ki Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권5호
    • /
    • pp.757-766
    • /
    • 2014
  • Postnatal muscle hypertrophy of beef cattle is the result of enhanced myofibrillar protein synthesis and reduced protein turnover. Skeletal muscle hypertrophy has been studied in cattle fed ${\beta}$-adrenergic agonists (${\beta}$-AA), which are receptor-mediated enhancers of protein synthesis and inhibitors of protein degradation. Feeding ${\beta}$-AA to beef cattle increases longissimus muscle cross-sectional area 6% to 40% compared to non-treated cattle. The ${\beta}$-AA have been reported to improve live animal performance, including average daily gain, feed efficiency, hot carcass weight, and dressing percentage. Treatment with ${\beta}$-AA increased mRNA concentration of the ${\beta}_2$ or ${\beta}_1$-adrenergic receptor and myosin heavy chain IIX in bovine skeletal muscle tissue. This review will examine the effects of skeletal muscle and adipose development with ${\beta}$-AA, and will interpret how the use of ${\beta}$-AA affects performance, body composition, and growth in beef cattle.

파골세포의 분화에 커규민의 억제 작용기전 (Inhibitory Mechanism of Curcumin in Osteoclast Differentiation)

  • 곽한복;최민규
    • 동의생리병리학회지
    • /
    • 제22권4호
    • /
    • pp.796-801
    • /
    • 2008
  • Bone is a dynamic tissue that is regulated by the balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Curcumin isolated from Kang-hwang (Turmeric) is widely used as a foodstuff, cosmetic, and medicine. However, the effect of curcumin isolated from Kang-hwang in osteoclast differentiation remains unknown. In this study, we sought to examine the role of curcumin in osteoclast differentiation. Here we show that curcumin greatly inhibited RANKL-mediated osteoclast differentiation in osteoclast precursors without cytotoxicity. RANKL induced the phosphorylation of p38 and JNK mitogen-activated protein kinase (MAPK) and mediated $I-{\kappa}B$ degradation in bone marrow macrophages (BMMs). However, RANKL-mediated p38 MAPK phosphorylation was inhibited by the addition of curcumin. Curcumin inhibited the mRNA expression of TRAP, c-Fos, and NFATc1 in BMMs treated with RANKL. Furthermore, the protein expression of c-Fos and NFATc1 induced by RANKL was suppressed by curcumin treatment. Taken together, our results suggest that curcumin may have a potential therapeutic role in bone-related diseases such as osteoporosis by inhibiting osteoclast differentiation.

NOD 당뇨병 생쥐에 미치는 맥문동의 항염증 효과 (Studies of Anti-inflammation of Liriopis Tuber to Autoimmunune Diabetes in NOD Mice)

  • 노성수;최학주;김동희;서영배
    • 동의생리병리학회지
    • /
    • 제22권4호
    • /
    • pp.766-770
    • /
    • 2008
  • Bone is a dynamic tissue that is regulated by the balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Curcumin isolated from Kang-hwang (Turmeric) is widely used as a foodstuff, cosmetic, and medicine. However, the effect of curcumin isolated from Kang-hwang in osteoclast differentiation remains unknown. In this study, we sought to examine the role of curcumin in osteoclast differentiation. Here we show that curcumin greatly inhibited RANKL-mediated osteoclast differentiation in osteoclast precursors without cytotoxicity. RANKL induced the phosphorylation of p38 and JNK mitogen-activated protein kinase (MAPK) and mediated $I-{\kappa}B$ degradation in bone marrow macrophages (BMMs). However, RANKL-mediated p38 MAPK phosphorylation was inhibited by the addition of curcumin. Curcumin inhibited the mRNA expression of TRAP, c-Fos, and NFATc1 in BMMs treated with RANKL. Furthermore, the protein expression of c-Fos and NFATc1 induced by RANKL was suppressed by curcumin treatment. Taken together, our results suggest that curcumin may have a potential therapeutic role in bone-related diseases such as osteoporosis by inhibiting osteoclast differentiation.

Kraft Lignin Biodegradation by Dysgonomonas sp. WJDL-Y1, a New Anaerobic Bacterial Strain Isolated from Sludge of a Pulp and Paper MillS

  • Duan, Jing;Liang, Jidong;Wang, Yiping;Du, Wenjing;Wang, Dongqi
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권10호
    • /
    • pp.1765-1773
    • /
    • 2016
  • Wastewater containing kraft lignin (KL) discharged from pulp and paper industries could cause serious environmental contamination. Appropriate effluent treatment is required to reduce the pollution. Investigations on anaerobic bacteria capable of degrading KL are beneficial to both lignin removal and biofuel regeneration from the effluent. In this paper, an anaerobic strain capable of degrading KL was isolated from the sludge of a pulp and paper mill and identified as Dysgonomonas sp. WJDL-Y1 by 16S rRNA analysis. Optimum conditions for KL degradation by strain WJDL-Y1 were obtained at initial pH of 6.8, C:N ratio of 6 and temperature of 33℃, based on statistical analyses by response surface methodology. For a 1.2 g/l KL solution, a COD removal rate of 20.7% concomitant with biomass increase of 17.6% was achieved after 4 days of incubation under the optimum conditions. After the treatment by strain WJDL-Y1, KL was modified and degraded.

Genomic Analysis of Actinomyces sp. Strain CtC72, a Novel Fibrolytic Anaerobic Bacterium Isolated from Cattle Rumen

  • Joshi, Akshay;Vasudevan, Gowdaman;Engineer, Anupama;Pore, Soham;Hivarkar, Sai Suresh;Lanjekar, Vikram Bholanath;Dhakephalkar, Prashant Kamalakar;Dagar, Sumit Singh
    • 한국미생물·생명공학회지
    • /
    • 제46권1호
    • /
    • pp.59-67
    • /
    • 2018
  • A xylanolytic and cellulolytic anaerobic bacterium strain CtC72 was isolated from cattle rumen liquor. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain CtC72 shared only 97.78% homology with its nearest phylogenetic affiliate Actinomyces ruminicola, showing its novelty. The strain could grow on medium containing xylan, carboxymethyl cellulose and avicel producing $CO_2$, acetate, and ethanol as major fermentation products. The whole genome analysis of the strain CtC72 exhibited a broad range of carbohydrate-active enzymes required for the breakdown and utilization of lignocellulosic biomass. Genes related to the production of ethanol and stress tolerance were also detected. Further there were several unique genes in CtC72 for chitin degradation, pectin utilization, sugar utilization, and stress response in comparison with Actinomyces ruminicola. The results show that the strain CtC72, a putative novel bacterium can be used for lignocellulosic biomass based biotechnological applications.

Saururus chinenesis Extracts Scavenge Reactive Oxygen Species and Modulate Nitric Oxide Production in Raw 264.7 Macrophages

  • Oh, Jang-Hee;Shon, Hee-Kyoung;Oh, Moon-You;Chung, An-Sik
    • Toxicological Research
    • /
    • 제18권2호
    • /
    • pp.117-127
    • /
    • 2002
  • Saururus chinensis Baill has been used in Korean folk medicine for the treatment of various diseases such as edema, Jaundice, and furuncle. The components of this plant were extracted into four fraction. Among the four fraction, hexane and ethyl acetate fraction were highly toxic to 3T3 mouse embryo fibroblast and Raw 264.7 mouse macrophage, but n-butanol and residue fraction did not show any toxic effect to those cell lines. n-Butanol and residue fraction exhibited antioxidant effects on hydro-gen peroxide, hydroxyl radical, and superoxide anion directly in vitro and in the 3T3 fibroblasts. All the four fractions inhibited lipid peroxidation measured by thiobarbituric acid reactive substances (TBARS) formation. In addition, n-butanol and residue fraction showed inhibitory effects on lipopolysaccharide (LPS)-induced nitric oxide production, and also down-regulated inducible nitric oxide synthase (iNOS) mRNA transcription 6 h after LPS stimulation in Raw 204.7 cells. Only n-butanol fraction, which mainly consists of flavonoids, inhibited NF-kB activation by decreasing IkBa degradation 90 min after LPS stimulation. horn the results, it is suggested that this plant could be a good candidate material for drug development based on its antioxidant and/or anti-inflammatory constituents.

Atg3-Mediated Lipidation of Atg8 Is Involved in Encystation of Acanthamoeba

  • Moon, Eun-Kyung;Chung, Dong-Il;Hong, Yeon-Chul;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • 제49권2호
    • /
    • pp.103-108
    • /
    • 2011
  • Autophagy is a catabolic process involved in the degradation of a cell's own components for cell growth, development, homeostasis, and the recycling of cellular products. Autophagosome is an essential component in the protozoan parasite during differentiation and encystation. The present study identified and characterized autophagy-related protein (Atg) 3, a member of Atg8 conjugation system, in Acanthamoeba castellanii (AcAtg3). AcAtg3 encoding a 304 amino acid protein showed high similarity with the catalytic cysteine site of other E2 like enzymes of ubiquitin system. Predicted 3D structure of AcAtg3 revealed a hammer-like shape, which is the characteristic structure of E2-like enzymes. The expression level of AcAtg3 did not increase during encystation. However, the formation of mature cysts was significantly reduced in Atg3-siRNA transfected cells in which the production of Atg8-phosphatidylethanolamine conjugate was inhibited. Fluorescent microscopic analysis revealed that dispersed AcAtg3-EGFP fusion protein gathered around autophagosomal membranes during encystation. These results provide important information for understanding autophagic machinery through the lipidation reaction mediated by Atg3 in Acanthamoeba.

MicroRNAs and Lymph Node Metastasis in Papillary Thyroid Cancers

  • Mutalib, Nurul-Syakima Ab;Yusof, Azliana Mohamad;Mokhtar, Norfilza Mohd;Harun, Roslan;Muhammad, Rohaizak;Jamal, Rahman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권1호
    • /
    • pp.25-35
    • /
    • 2016
  • Lymph node metastasis (LNM) in papillary thyroid cancer (PTC) has been shown to be associated with increased risk of locoregional recurrence, poor prognosis and decreased survival, especially in older patients. Hence, there is a need for a reliable biomarker for the prediction of LNM in this cancer. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene translation or degradation and play key roles in numerous cellular functions including cell-cycle regulation, differentiation, apoptosis, invasion and migration. Various studies have demonstrated deregulation of miRNA levels in many diseases including cancers. While a large number of miRNAs have been identified from PTCs using various means, association of miRNAs with LNM in such cases is still controversial. Furthermore, studies linking most of the identified miRNAs to the mechanism of LNM have not been well documented. The aim of this review is to update readers on the current knowledge of miRNAs in relation to LNM in PTC.

Deubiquitinase YOD1: the potent activator of YAP in hepatomegaly and liver cancer

  • Kim, Youngeun;Jho, Eek-hoon
    • BMB Reports
    • /
    • 제50권6호
    • /
    • pp.281-282
    • /
    • 2017
  • Advances in the understanding of the Hippo signaling as a key regulatory pathway of proliferation and apoptosis have provided mechanical insights for controlling organ size and tumorigenicity. Recently, much attention has been directed to the regulation of LATS1/2 (large tumor suppressor) kinases that phosphorylate YAP/TAZ, a transcriptional co-activator in the Hippo pathway, and control the level and nuclear localization of YAP/TAZ. In our recent work, we showed that deubiquitinase YOD1 stabilizes ITCH, and facilitates ITCH-mediated LATS1/2 ubiquitination and degradation, resulting in increased YAP/TAZ level. Furthermore, we found that the YOD1-ITCH-LATS1/2-YAP/TAZ signaling axis is controlled by the differential expression of miR-21 in a cell-density-dependent manner. Using a transgenic mouse model, we showed that the inducible expression of YOD1 enhances the proliferation of hepatocytes and leads to hepatomegaly in a YAP/TAZ-activity-dependent manner. Moreover, a strong correlation was observed between YOD1 and YAP expression in liver cancer patients. Overall, our data suggest that YOD1 is a novel regulator of the Hippo pathway, and thereby a potential therapeutic target for liver cancer.

Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells

  • Lee, Hyunjung;Park, Jinyoung;Kim, Eunice EunKyeong;Yoo, Young Sook;Song, Eun Joo
    • BMB Reports
    • /
    • 제49권5호
    • /
    • pp.270-275
    • /
    • 2016
  • The Ubiquitin proteasome system (UPS) plays roles in protein degradation, cell cycle control, and growth and inflammatory cell signaling. Dysfunction of UPS in cardiac diseases has been seen in many studies. Cholesterol acts as an inducer of cardiac hypertrophy. In this study, the effect of proteasome inhibitors on the cholesterol-induced hypertrophic growth in H9c2 cells is examined in order to observe whether UPS is involved in cardiac hypertrophy. The treatment of proteasome inhibitors MG132 and Bortezomib markedly reduced cellular surface area and mRNA expression of β-MHC in cholesterol-induced cardiac hypertrophy. In addition, activated AKT and ERK were significantly attenuated by MG132 and Bortezomib in cholesterol-induced cardiac hypertrophy. We demonstrated that cholesterol-induced cardiac hypertrophy was suppressed by proteasome inhibitors. Thus, regulatory mechanism of cholesterol-induced cardiac hypertrophy by proteasome inhibitors may provide a new therapeutic strategy to prevent the progression of heart failure.