DOI QR코드

DOI QR Code

Genomic Analysis of Actinomyces sp. Strain CtC72, a Novel Fibrolytic Anaerobic Bacterium Isolated from Cattle Rumen

  • Received : 2017.12.12
  • Accepted : 2017.12.18
  • Published : 2018.03.28

Abstract

A xylanolytic and cellulolytic anaerobic bacterium strain CtC72 was isolated from cattle rumen liquor. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain CtC72 shared only 97.78% homology with its nearest phylogenetic affiliate Actinomyces ruminicola, showing its novelty. The strain could grow on medium containing xylan, carboxymethyl cellulose and avicel producing $CO_2$, acetate, and ethanol as major fermentation products. The whole genome analysis of the strain CtC72 exhibited a broad range of carbohydrate-active enzymes required for the breakdown and utilization of lignocellulosic biomass. Genes related to the production of ethanol and stress tolerance were also detected. Further there were several unique genes in CtC72 for chitin degradation, pectin utilization, sugar utilization, and stress response in comparison with Actinomyces ruminicola. The results show that the strain CtC72, a putative novel bacterium can be used for lignocellulosic biomass based biotechnological applications.

Keywords

References

  1. Viikari L, Vehmaanpera J, Koivula A. 2012. Lignocellulosic ethanol: from science to industry. Biomass Bioenergy 46: 13-24. https://doi.org/10.1016/j.biombioe.2012.05.008
  2. Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HMN. 2017. Lignocellulose: A sustainable material to produce value-added products with a zero waste approach-A review. Int. J. Biol. Macromol. 99: 308-318. https://doi.org/10.1016/j.ijbiomac.2017.02.097
  3. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  4. Sirohi SK, Singh N, Dagar SS, Puniya AK. 2012. Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl. Microbiol. Biotechnol. 95: 1135-1154. https://doi.org/10.1007/s00253-012-4262-2
  5. Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, et al. 2011. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331: 463-467.
  6. Dagar S, Singh N, Goel N, Kumar S, Puniya A. 2014. Role of anaerobic fungi in wheat straw degradation and effects of plant feed additives on rumen fermentation parameters in vitro. Benef. Microbes. 6: 353-360.
  7. Miller TL, Wolin M. 1974. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 27: 985-987.
  8. Suzuki MT, Giovannoni SJ. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625-630.
  9. Singh KG, Lapsiya KL, Gophane RR, Ranade DR. 2016. Optimization for butanol production using Plackett-Burman Design coupled with Central Composite Design by Clostridium beijerenckii strain CHTa isolated from distillery waste manure. J. Biochem. Tech. 7:1063-1068.
  10. Dighe AS, Shouche YS, Ranade DR. 1998. Selenomonas lipolytica sp. nov., an obligately anaerobic bacterium possessing lipolytic activity. Int. J. Syst. Bacteriol. 48: 783-791. https://doi.org/10.1099/00207713-48-3-783
  11. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
  12. Van Domselaar GH, Stothard P, Shrivastava S, Cruz JA, Guo A, Dong X, et al. 2005. BASys: a web server for automated bacterial genome annotation. Nucleic Acids Res. 33: W455-W459. https://doi.org/10.1093/nar/gki593
  13. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32: D277-D280. https://doi.org/10.1093/nar/gkh063
  14. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. 2012. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40: W445-W451. https://doi.org/10.1093/nar/gks479
  15. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  16. Meier-Kolthoff JP, Auch AF, Klenk H-P, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60. https://doi.org/10.1186/1471-2105-14-60
  17. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Anton. Leeuw. 110: 1281-1286. https://doi.org/10.1007/s10482-017-0844-4
  18. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12: 402.
  19. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. 2015. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43: W237-W243.
  20. van Heel AJ, de Jong A, Montalban-Lopez M, Kok J, Kuipers OP. 2013. BAGEL3: automated identification of genes encoding bacteriocins and (non-) bactericidal posttranslationally modified peptides. Nucleic Acids Res. 41: W448-W453. https://doi.org/10.1093/nar/gkt391
  21. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. 2017. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45: D566-D573. https://doi.org/10.1093/nar/gkw1004
  22. Kim M, Oh HS, Park SC, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64: 346-351. https://doi.org/10.1099/ijs.0.059774-0
  23. Cimmino T, Metidji S, Labas N, Le Page S, Musso D, Raoult D, et al. 2016. Genome sequence and description of Actinomyces polynesiensis str. MS2 sp. nov. isolated from the human gut. New Microbes New Infect. 12: 1-5. https://doi.org/10.1016/j.nmni.2016.02.014
  24. NA SP, Pristas P, Hrehova L, Javorsky P, Stams AJ, Plugge CM. 2016. Actinomyces succiniciruminis sp. nov. and Actinomyces glycerinitolerans sp. nov., two novel organic acid-producing bacteria isolated from rumen. Syst. Appl. Microbiol. 39: 445-452. https://doi.org/10.1016/j.syapm.2016.08.001
  25. Gao B, Jin M, Li L, Qu W, Zeng R. 2017. Genome sequencing reveals the complex polysaccharide-degrading ability of novel deep-sea bacterium Flammeovirga pacifica WPAGA1. Front. Microbiol. 8: 600.
  26. Dodd D, Cann IK. 2009. Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy 1: 2-17. https://doi.org/10.1111/j.1757-1707.2009.01004.x
  27. Schafers C, Blank S, Wiebusch S, Elleuche S, Antranikian G. 2017. Complete genome sequence of Thermus brockianus GE-1 reveals key enzymes of xylan/xylose metabolism. Stand. Genomic. Sci. 12: 22. https://doi.org/10.1186/s40793-017-0225-7
  28. Reid MF, Fewson CA. 1994. Molecular characterization of microbial alcohol dehydrogenases. Crit. Rev. Microbiol. 20: 13-56. https://doi.org/10.3109/10408419409113545
  29. Radianingtyas H, Wright PC. 2003. Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol. Rev. 27: 593-616. https://doi.org/10.1016/S0168-6445(03)00068-8
  30. Littlechild J, Guy J, Isupov M. 2004. Hyperthermophilic dehydrogenase enzymes. Biochem. Soc. Trans. 32: 255-258. https://doi.org/10.1042/bst0320255
  31. Keller MW, Lipscomb GL, Nguyen DM, Crowley AT, Schut GJ, Scott I, et al. 2017. Ethanol production by the hyperthermophilic archaeon Pyrococcus furiosus by expression of bacterial bifunctional alcohol dehydrogenases. Microb. Biotechnol. 10: 1535-1545. https://doi.org/10.1111/1751-7915.12486
  32. Andrietta M, Andrietta S, Steckelberg C, Stupiello E. 2007. Bioethanol- Brazil, 30 years of Proalcool. Int. Sugar. J. 109: 195-200.
  33. Basso LC, De Amorim HV, De Oliveira AJ, Lopes ML. 2008. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res. 8: 1155-1163. https://doi.org/10.1111/j.1567-1364.2008.00428.x
  34. Sootsuwan K, Thanonkeo P, Keeratirakha N, Thanonkeo S, Jaisil P, Yamada M. 2013. Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Biotechnol. Biofuels. 6: 180. https://doi.org/10.1186/1754-6834-6-180
  35. Ma R, Zhang Y, Hong H, Lu W, Lin M, Chen M, et al. 2011. Improved osmotic tolerance and ethanol production of ethanologenic Escherichia coli by IrrE, a global regulator of radiationresistance of Deinococcus radiodurans. Curr. Microbiol. 62: 659-664. https://doi.org/10.1007/s00284-010-9759-2
  36. Comporti M, Signorini C, Leoncini S, Gardi C, Ciccoli L, Giardini A, et al. 2010. Ethanol-induced oxidative stress: basic knowledge. Genes Nutr. 5: 101-109.
  37. Stanley D, Bandara A, Fraser S, Chambers P, Stanley GA. 2010. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J. Appl. Microbiol. 109: 13-24.
  38. Todorov SD. 2009. Bacteriocins from Lactobacillus plantarum production, genetic organization and mode of action: producao, organizacao genetica e modo de acao. Braz J. Microbiol. 40: 209-221. https://doi.org/10.1590/S1517-83822009000200001
  39. Bonelli RR, Schneider T, Sahl H-G, Wiedemann I. 2006. Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies. Antimicrob. Agents Chemother. 50: 1449-1457. https://doi.org/10.1128/AAC.50.4.1449-1457.2006
  40. Knerr PJ, Van Der Donk WA. 2012. Discovery, biosynthesis, and engineering of lantipeptides. Annu. Rev. Biochem. 81: 479-505. https://doi.org/10.1146/annurev-biochem-060110-113521
  41. Peng J, Zhang L, Gu ZH, Ding ZY, Shi GY. 2012. The role of nisin in fuel ethanol production with Saccharomyces cerevisiae. Lett. Appl. Microbiol. 55: 128-134. https://doi.org/10.1111/j.1472-765X.2012.03275.x
  42. Ravcheev DA, Godzik A, Osterman AL, Rodionov DA. 2013. Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks. BMC Genomics. 14: 873.
  43. Kopecny J, Hodrova B, Stewart CS. 1996. The effect of rumen chitinolytic bacteria on cellulolytic anaerobic fungi. Lett. Appl. Microbiol. 23: 199-202.
  44. Bennett GN, San KY. 2001. Microbial formation, biotechnological production and applications of 1, 2-propanediol. Appl. Microbiol. Biotechnol. 55: 1-9. https://doi.org/10.1007/s002530000476
  45. de Albuquerque TL, da Silva IJ, de Macedo GR, Rocha MVP. 2014. Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem. 49: 1779-1789. https://doi.org/10.1016/j.procbio.2014.07.010
  46. Garcia-Quintans N, Repizo G, Martin M, Magni C, Lopez P. 2008. Activation of the diacetyl/acetoin pathway in Lactococcus lactis subsp. lactis bv. diacetylactis CRL264 by acidic growth. Appl. Environ. Microbiol. 74: 1988-1996. https://doi.org/10.1128/AEM.01851-07
  47. Joo J, Lee SJ, Yoo HY, Kim Y, Jang M, Lee J, et al. 2016. Improved fermentation of lignocellulosic hydrolysates to 2, 3-butanediol through investigation of effects of inhibitory compounds by Enterobacter aerogenes. Chem. Eng. J. 306: 916-924. https://doi.org/10.1016/j.cej.2016.07.113

Cited by

  1. Effect of Diet on the Enteric Microbiome of the Wood-Eating Catfish Panaque nigrolineatus vol.10, pp.None, 2018, https://doi.org/10.3389/fmicb.2019.02687