• Title/Summary/Keyword: RNA aptamers

Search Result 25, Processing Time 0.024 seconds

Therapeutic aptamers: developmental potential as anticancer drugs

  • Lee, Ji Won;Kim, Hyun Jung;Heo, Kyun
    • BMB Reports
    • /
    • v.48 no.4
    • /
    • pp.234-237
    • /
    • 2015
  • Aptamers, composed of single-stranded DNA or RNA oligonucleotides that interact with target molecules through a specific three-dimensional structure, are selected from pools of combinatorial oligonucleotide libraries. With their high specificity and affinity for target proteins, ease of synthesis and modification, and low immunogenicity and toxicity, aptamers are considered to be attractive molecules for development as anticancer therapeutics. Two aptamers - one targeting nucleolin and a second targeting CXCL12 - are currently undergoing clinical trials for treating cancer patients, and many more are under study. In this mini-review, we present the current clinical status of aptamers and aptamer-based cancer therapeutics. We also discuss advantages, limitations, and prospects for aptamers as cancer therapeutics. [BMB Reports 2015; 48(4): 234-237]

Antibiofilm Activity and Binding Specificity of Polyclonal DNA Aptamers on Staphylococcus aureus and Escherichia coli

  • Arizah Kusumawati;Apon Zaenal Mustopa;Rifqiyah Nur Umami;Adi Santoso;I Wayan Teguh Wibawan;Agus Setiyono;Mirnawati Bachrum Sudarwanto
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.328-336
    • /
    • 2022
  • Aptamers are short, chemically synthesized, single-stranded DNA or RNA oligonucleotides that fold into unique three-dimensional structures. In this study, we aim to determine the antibiofilm activity and binding specificity of the six polyclonal DNA aptamers (S15K3, S15K4, S15K6, S15K13, S15K15, and S15K20) on Staphylococcus aureus BPA-12 and Escherichia coli EPEC 4. Aptamer S15K6 showed the highest percentage of antibiofilm activity against S. aureus BPA-12 (37.4%) as shown by the lowest OD570 value of 0.313. Aptamer S15K20 showed the highest percentage of antibiofilm activity against E. coli EPEC 4 (15.4%) as shown by the lowest OD570 value of 0.515. Aptamers S15K13 and S15K20 showed antibiofilm activities against both S. aureus BPA-12 and E. coli EPEC4, and thus potentially have broad reactivity. Furthermore, based on the binding capacity and Kd values from our previous study, the binding specificity assay of selected polyclonal DNA aptamers (S15K3 and S15K15) against S. aureus BPA-12, E. coli EPEC 4, S. aureus BPA-6, S. agalactiae, E. coli MHA-6, and Listeria monocytogenes were performed using qPCR. Aptamers S15K3 and S15K15 showed specific binding to S. aureus BPA-12, E. coli EPEC 4, S. aureus BPA-6, and S. agalactiae, but could not bind to E. coli MHA-6 and L. monocytogenes. Therefore, this study showed that the polyclonal DNA aptamers have antibiofilm activity and were able to bind to S. aureus BPA-12 and E. coli EPEC 4 bacteria.

Aptamers as Functional Nucleic Acids: in vitro Selection and Biotechnological Applications

  • You, Kyung-Man;Lee, Sang-Hyun;Aesul Im;Lee, Sun-Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.64-75
    • /
    • 2003
  • Aptamers are functional nucleic acids that can specially bind to proteins, peptides, amino acids. nucleotides, drugs, vitamins and other organic and inorganic compounds. The aptamers are identified from random DNA or RNA libraries by a SELEX (systematic evolution of ligands by exponential amplification) process. As aptamers have the advantage, and potential ability to be released from the limitations of antibodies, they are attractive to a wide range of therapeutic and diagnostic applications. Aptamers, with a high-affinity and specificity, could fulfil molecular the recognition needs of various fields in biotechnology. In this work, we reviewed some aptamer Selection techniques, properties, medical applications of their molecules and their biotechnological applications, such as ELONA (enzyme linked oligonucleotide assay), flow cytometry, biosensors, electrophoresis, chromatography and microarrays.

Aptamers (nucleic acid ligands) for trypsin-like serine proteases

  • Gal, Sang-Wan;Jeong, Yong-Kee;Satoshi Nishikawa
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.14-18
    • /
    • 2002
  • Subpopulations of nucleotides that bind specifically to a variety of proteins have been isolated from a population of random sequence RNA/DNA molecules. Roughly one in $10^{13}$ random sequence RNA/DNA molecules folds in such a way as to create a specific binding site for small ligands. Since the development of in vitro selection procedure, more than 50 nucleic acid ligands (aptamers) have been isolated. These molecules are very useful for the study of molecular recognition between nucleic acid and protein/organic compound. In addition to these basic studies this method gives us a dream to produce new drugs against several diseases. We focused on several aptamers which specifically binds to trypsin-like serine proteases (thrombin, human neutrophil elastase, activated protein C and NS3 protease of human hepatitis C virus) and want to introduce their structural characteristics and some functions.

  • PDF

Massive Identification of Cancer-Specific Nucleic Acid Ligands

  • Lee, Young Ju;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.3 no.2
    • /
    • pp.77-80
    • /
    • 2005
  • Targeting of complex system such as human cells rather than biochemically pure molecules will be a useful approach to massively identify ligands specific for the markers associated with human disease such as cancer and simultaneously discover the specific molecular markers. In this study, we developed in vitro selection method to identify nuclease-resistant nucleic acid ligands called RNA aptamers that are specific for human cancer cells. This method is based on the combination of the cell-based selection and subtractive systematic evolution of ligands by exponential enrichment (SELEX) method. These aptamers will be useful for cancer-specific ligands for proteomic research to identify cancer-specific molecular markers as well as tumor diagnosis and therapy.

Label-free Detection of the Transcription Initiation Factor Assembly and Specific Inhibition by Aptamers

  • Ren, Shuo;Jiang, Yuanyuan;Yoon, Hye Rim;Hong, Sun Woo;Shin, Donghyuk;Lee, Sangho;Lee, Dong-Ki;Jin, Moonsoo M.;Min, Irene M.;Kim, Soyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1279-1284
    • /
    • 2014
  • The binding of TATA-binding protein (TBP) to the TATA-box containing promoter region is aided by many other transcriptional factors including TFIIA and TFIIB. The mechanistic insight into the assembly of RNA polymerase II preinitation complex (PIC) has been gained by either directly altering a function of target protein or perturbing molecular interactions using drugs, RNAi, or aptamers. Aptamers have been found particularly useful for studying a role of a subset of PIC on transcription for their ability to inhibit specific molecular interactions. One major hurdle to the wide use of aptamers as specific inhibitors arises from the difficulty with traditional assays to validate and determine specificity, affinity, and binding epitopes for aptamers against targets. Here, using a technique called the bio-layer interferometry (BLI) designed for a label-free, real-time, and multiplexed detection of molecular interactions, we studied the assembly of a subset of PIC, TBP binding to TATA DNA, and two distinct classes of aptamers against TPB in regard to their ability to inhibit TBP binding to TFIIA or TATA DNA. Using BLI, we measured not only equilibrium binding constants ($K_D$), which were overall in close agreement with those obtained by electrophoretic mobility shift assay, but also kinetic constants of binding ($k_{on}$ and $k_{off}$), differentiating aptamers of comparable KDs by their difference in binding kinetics. The assay developed in this study can readily be adopted for high throughput validation of candidate aptamers for specificity, affinity, and epitopes, providing both equilibrium and kinetic information for aptamer interaction with targets.

Isolation of MLL1 Inhibitory RNA Aptamers

  • Ul-Haq, Asad;Jin, Ming Li;Jeong, Kwang Won;Kim, Hwan-Mook;Chun, Kwang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.201-209
    • /
    • 2019
  • Mixed lineage leukemia proteins (MLL) are the key histone lysine methyltransferases that regulate expression of diverse genes. Aberrant activation of MLL promotes leukemia as well as solid tumors in humans, highlighting the urgent need for the development of an MLL inhibitor. We screened and isolated MLL1-binding ssRNAs using SELEX (${\underline{S}}ystemic$ ${\underline{E}}volution$ of ${\underline{L}}igands$ by ${\underline{E}}xponential$ enrichment) technology. When sequences in sub-libraries were obtained using next-generation sequencing (NGS), the most enriched aptamers-APT1 and APT2-represented about 30% and 26% of sub-library populations, respectively. Motif analysis of the top 50 sequences provided a highly conserved sequence: 5'-A[A/C][C/G][G/U][U/A]ACAGAGGG[U/A]GG[A/C] GAGUGGGU-3'. APT1, APT2, and APT5 embracing this motif generated secondary structures with similar topological characteristics. We found that APT1 and APT2 have a good binding activity and the analysis using mutated aptamer variants showed that the site information in the central region was critical for binding. In vitro enzyme activity assay showed that APT1 and APT2 had MLL1 inhibitory activity. Three-dimensional structure prediction of APT1-MLL1 complex indicates multiple weak interactions formed between MLL1 SET domain and APT1. Our study confirmed that NGS-assisted SELEX is an efficient tool for aptamer screening and that aptamers could be useful in diagnosis and treatment of MLL1-mediated diseases.