DOI QR코드

DOI QR Code

Antibiofilm Activity and Binding Specificity of Polyclonal DNA Aptamers on Staphylococcus aureus and Escherichia coli

  • Arizah, Kusumawati (Study Program of Veterinary Public Health, IPB Graduate School, IPB University) ;
  • Apon Zaenal, Mustopa (Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN)) ;
  • Rifqiyah Nur, Umami (Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN)) ;
  • Adi, Santoso (Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN)) ;
  • I Wayan Teguh, Wibawan (Department of Animal Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University) ;
  • Agus, Setiyono ( Department of Veterinary Clinic Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University) ;
  • Mirnawati Bachrum, Sudarwanto (Department of Animal Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University)
  • Received : 2022.06.02
  • Accepted : 2022.08.23
  • Published : 2022.09.28

Abstract

Aptamers are short, chemically synthesized, single-stranded DNA or RNA oligonucleotides that fold into unique three-dimensional structures. In this study, we aim to determine the antibiofilm activity and binding specificity of the six polyclonal DNA aptamers (S15K3, S15K4, S15K6, S15K13, S15K15, and S15K20) on Staphylococcus aureus BPA-12 and Escherichia coli EPEC 4. Aptamer S15K6 showed the highest percentage of antibiofilm activity against S. aureus BPA-12 (37.4%) as shown by the lowest OD570 value of 0.313. Aptamer S15K20 showed the highest percentage of antibiofilm activity against E. coli EPEC 4 (15.4%) as shown by the lowest OD570 value of 0.515. Aptamers S15K13 and S15K20 showed antibiofilm activities against both S. aureus BPA-12 and E. coli EPEC4, and thus potentially have broad reactivity. Furthermore, based on the binding capacity and Kd values from our previous study, the binding specificity assay of selected polyclonal DNA aptamers (S15K3 and S15K15) against S. aureus BPA-12, E. coli EPEC 4, S. aureus BPA-6, S. agalactiae, E. coli MHA-6, and Listeria monocytogenes were performed using qPCR. Aptamers S15K3 and S15K15 showed specific binding to S. aureus BPA-12, E. coli EPEC 4, S. aureus BPA-6, and S. agalactiae, but could not bind to E. coli MHA-6 and L. monocytogenes. Therefore, this study showed that the polyclonal DNA aptamers have antibiofilm activity and were able to bind to S. aureus BPA-12 and E. coli EPEC 4 bacteria.

Keywords

Acknowledgement

This research was supported by DIPA project and by Research scheme, National Research and Innovation Agency (BRIN).

References

  1. Kaczorowski L, Powierska-Czarny J, Wolko L, Piotrowska-Cyplik A, Cyplik P, Czarny J. 2022. The influence of bacteria causing subclinical mastitis on the structure of the cow's milk microbiome. Molecules 27: 1829.
  2. Duse A, Persson-Waller K, Pedersen K. 2021. Microbial aetiology, antibiotic susceptibility and pathogen-specific risk factors for udder pathogens from clinical mastitis in dairy cows. Animals 11: 2113.
  3. Pereira UP, Oliveira DGS, Mesquita LR, Costa GM, Pereira LJ. 2011. Efficacy of Staphylococcus aureus vaccines for bovine mastitis: A systematic review. Vet. Microbiol. 148: 117-124. https://doi.org/10.1016/j.vetmic.2010.10.003
  4. Hossain M. 2017. Bovine mastitis and its therapeutic strategy doing antibiotic sensitivity test. Austin J. Vet. Sci. Anim. Husb. 4: id1030.
  5. Raza A, Muhammad G, Sharif S, Atta A. 2013. Biofilm producing Staphylococcus aureus and bovine mastitis: A review. Mol. Microbiol. Res. 3: 1-8.
  6. Cheng WN, Han SG. 2020. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review. Asian-Austral-Asian J. Anim. Sci. 33: 1699-1713. https://doi.org/10.5713/ajas.20.0156
  7. Yang Y, Liu Y, Ding Y, Yi L, Ma Z, Fan H, et al. 2013. Molecular characterization of Streptococcus agalactiae isolated from bovine mastitis in Eastern China. PLoS One 8: e67755.
  8. Arpini C, Cardoso P, Paiva M, da Costa Custodio D, da Costa G. 2016. Virulence genes of the Streptococcus agalactiae associated with bovine mastitis in Minas Gerais Livestock Herds, Brazil. Appl. Microbiol. 2: 1000119.
  9. Botelho ACN, Ferreira AFM, Fracalanzza SEL, Teixeira LM, Pinto TCA. 2018. A perspective on the potential zoonotic role of Streptococcus agalactiae: Searching for a missing link in alternative transmission routes. Front. Microbiol. 9: 608.
  10. Hernandez L, Bottini E, Cadona J, Cacciato C, Monteavaro C, Bustamante A, et al. 2021. Multidrug resistance and molecular characterization of Streptococcus agalactiae isolates from dairy cattle with mastitis. Front. Cell. Infect. Microbiol. 11: 647324.
  11. Jorgensen HJ, Nordstoga AB, Sviland S, Zadoks RN, Solverod L, Kvitle B, et al. 2016. Streptococcus agalactiae in the environment of bovine dairy herds - rewriting the textbooks? Vet. Microbiol. 184: 64-72. https://doi.org/10.1016/j.vetmic.2015.12.014
  12. Gunther J, Esch K, Poschadel N, Petzl W, Zerbe H, Mitterhuemer S, et al. 2011. Comparative kinetics of Escherichia coli and Staphylococcus aureus specific activation of key immune pathways in mammary epithelial cells demonstrates that S. aureus elicits a delayed response dominated by interleukin-6 (IL-6) but not by IL1A or tumor necrosis factor alpha. Infect. Immun. 79: 695-707. https://doi.org/10.1128/IAI.01071-10
  13. Gie J, Drastini Y. 2016. Escherichia coli O157:H7 in milk of cows and the farm environment. Indones. J. Vet. Sci. 9: 174-177.
  14. Jenkins C, Rentenaar R, Landraud L, Brisse S. 2017. Enterobacteriaceae. Clin. Microbiol. Bact. pp. 1565-1578.
  15. Dogan B, Klaessig S, Rishniw M, Almeida RA, Oliver SP, Simpson K, et al. 2006. Adherent and invasive Escherichia coli are associated with persistent bovine mastitis. Vet. Microbiol. 116: 270-282. https://doi.org/10.1016/j.vetmic.2006.04.023
  16. Fahim KM, Ismael E, Khalefa HS, Farag HS, Hamza DA. 2019. Isolation and characterization of E. coli strains causing intramammary infections from dairy animals and wild birds. Int. J. Vet. Sci. Med. 7: 61-70. https://doi.org/10.1080/23144599.2019.1691378
  17. Suojala L, Kaartinen L, Pyorala S. 2013. Treatment for bovine Escherichia coli mastitis - an evidence-based approach. J. Vet. Pharmacol. Ther. 36: 521-531. https://doi.org/10.1111/jvp.12057
  18. Hunt K, Drummond N, Murphy M, Butler F, Buckley J, Jordan K. 2012. A case of bovine raw milk contamination with Listeria monocytogenes. Ir. Vet. J. 65: 18-20. https://doi.org/10.1186/2046-0481-65-18
  19. Sarkar S. 2015. Microbiological considerations: Pasteurized milk. Int. J. Dairy Sci. 10: 206-218. https://doi.org/10.3923/ijds.2015.206.218
  20. Rodriguez C, Taminiau B, Garcia-Fuentes E, Daube G, Korsak N. 2021. Listeria monocytogenes dissemination in farming and primary production: Sources, shedding and control measures. Food Control 120: 107540.
  21. Skowron K, Sekowska A, Kaczmarek A, Grudlewska K, Budzynska A, Bialucha A, et al. 2019. Comparison of the effectiveness of dipping agents on bacteria causing mastitis in cattle. Ann. Agric. Environ. Med. 26: 39-45. https://doi.org/10.26444/aaem/82626
  22. Addis MF, Cubeddu T, Pilicchi Y, Rocca S, Piccinini R. 2019. Chronic intramammary infection by Listeria monocytogenes in a clinically healthy goat - A case report. BMC Vet. Res. 15: 229.
  23. Varhimo E, Varmanen P, Fallarero A, Skogman M, Pyorala S, Iivanainen A, et al. 2011. Alpha- and β-casein components of host milk induce biofilm formation in the mastitis bacterium Streptococcus uberis. Vet. Microbiol. 149: 381-389. https://doi.org/10.1016/j.vetmic.2010.11.010
  24. Sharun K, Dhama K, Tiwari R, Gugjoo MB, Iqbal Yatoo M, Patel SK, et al. 2021. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Vet. Q. 41: 107-136. https://doi.org/10.1080/01652176.2021.1882713
  25. Nimjee SM, White RR, Becker RC, Sullenger BA. 2017. Aptamers as therapeutics. Annu. Rev. Pharmacol. Toxicol. 57: 61-79. https://doi.org/10.1146/annurev-pharmtox-010716-104558
  26. Torres-Chavolla E, Alocilja EC. 2009. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 24: 3175-3182. https://doi.org/10.1016/j.bios.2008.11.010
  27. Li D, Liu L, Huang Q, Tong T, Zhou Y, Li Z, et al. 2021. Recent advances on aptamer-based biosensors for detection of pathogenic bacteria. World J. Microbiol. Biotechnol. 37: 45.
  28. Ning Y, Cheng L, Ling M, Feng X, Chen L, Wu M, et al. 2015. Efficient suppression of biofilm formation by a nucleic acid aptamer. Pathog. Dis. 73: ftv034.
  29. Zhao M, Li W, Liu K, Li H, Lan X. 2019. C4-HSL aptamers for blocking qurom sensing and inhibiting biofilm formation in Pseudomonas aeruginosa and its structure prediction and analysis. PLoS One 14: e0212041.
  30. Kusumawati A, Mustopa AZ, Wibawan IWT, Setiyono A. 2022. A sequential toggle cell - SELEX DNA aptamer for targeting Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli bacteria. J. Genet. Eng. Biotechnol. 20: 95.
  31. Mustopa AZ, Puspitasari IF, Fatimah, Triratna L, Kartina G. 2018. Genetic diversity of mastitis cow's milk bacteria based on RAPD-PCR. Biodiversitas 19: 1714-1721. https://doi.org/10.13057/biodiv/d190517
  32. Mustopa AZ, Fatimah F. 2014. Diversity of lactic acid bacteria isolated from indonesian traditional fermented foods. Microbiol. Indones. 8: 48-57. https://doi.org/10.5454/mi.8.2.2
  33. Oroh SB, Mustopa AZ, Budiarti S, Budiarto BR. 2020. Inhibition of enteropathogenic Escherichia coli biofilm formation by DNA aptamer. Mol. Biol. Rep. 47: 7567-7573. https://doi.org/10.1007/s11033-020-05822-8
  34. Mladenovic K, Muruzovic M, Zugic-Petrovic T, Comic L. 2018. The influence of environmental factors on the planktonic growth and biofilm formation of Escherichia coli. Kragujev. J. Sci. 40: 205-216. https://doi.org/10.5937/kgjsci1840205m
  35. Shatila F, Yasa I, Yalcin HT. 2020. Inhibition of Salmonella enteritis-dis biofilms by Salmonella invasion protein-targeting aptamer. Biotechnol. Lett. 42: 1963-1974. https://doi.org/10.1007/s10529-020-02920-2
  36. Monistero V, Graber HU, Pollera C, Cremonesi P, Castiglioni B, Bottini E, et al. 2018. Staphylococcus aureus isolates from bovine mastitis in eight countries: Genotypes, detection of genes encoding different toxins and other virulence genes. Toxins (Basel) 10: 247.
  37. Ote I, Taminiau B, Duprez JN, Dizier I, Mainil JG. 2011. Genotypic characterization by polymerase chain reaction of Staphylococcus aureus isolates associated with bovine mastitis. Vet. Microbiol. 153: 285-292. https://doi.org/10.1016/j.vetmic.2011.05.042
  38. Pang M, Sun L, He T, Bao H, Zhang L, Zhou Y, et al. 2017. Molecular and virulence characterization of highly prevalent Streptococcus agalactiae circulated in bovine dairy herds. Vet. Res. 48: 65.
  39. Keefe G. 2012. Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis. Vet. Clin. North Am. - Food Anim. Pract. 28: 203-216. https://doi.org/10.1016/j.cvfa.2012.03.010
  40. Sukhnanand S, Dogan B, Ayodele MO, Zadoks RN, Craver MPJ, Dumas NB, et al. 2005. Molecular subtyping and characterization of bovine and human Streptococcus agalactiae isolates. J. Clin. Microbiol. 43: 1177-1186. https://doi.org/10.1128/JCM.43.3.1177-1186.2005
  41. Kabelitz T, Aubry E, van Vorst K, Amon T, Fulde M. 2021. The role of Streptococcus spp. in bovine mastitis. Microorganisms 9: 1497.
  42. Fernandes JBC, Zanardo LG, Galvao NN, Carvalho IA, Nero LA, Moreira MAS. 2011. Escherichia coli from clinical mastitis: serotypes and virulence factors. J. Vet. Diagn. Investig. 23: 1146-1152. https://doi.org/10.1177/1040638711425581
  43. Bradley AJ, Green MJ. 2001. Adaptation of Escherichia coli to the bovine mammary gland. J. Clin. Microbiol. 39: 1845-1849. https://doi.org/10.1128/JCM.39.5.1845-1849.2001
  44. Milanov D, Prunic B, Velhner M, Todorovic D, Polacek V. 2015. Investigation of biofilm formation and phylogenetic typing of Escherichia coli strains isolated from milk of cows with mastitis. Acta Vet. Brno. 65: 202-216. https://doi.org/10.1515/acve-2015-0017
  45. Pedersen RR, Kromker V, Bjarnsholt T, Dahl-Pedersen K, Buhl R, Jorgensen E. 2021. Biofilm research in bovine mastitis. Front. Vet. Sci. 8: 656810.
  46. Gomes F, Saavedra MJ, Henriques M. 2016. Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms. Pathog. Dis. 74: ftw006.
  47. Abril AG, Villa TG, Barros-Velazquez J, Canas B, Sanchez-Perez A, Calo-Mata P, et al. 2020. Staphylococcus aureus exotoxins and their detection in the dairy industry and mastitis. Toxins (Basel) 12: 537.
  48. Lister JL, Horswill AR. 2014. Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Front. Cell. Infect. Microbiol. 4: 178.
  49. Moormeier DE, Bayles KW. 2017. Staphylococcus aureus biofilm: a complex developmental organism. Mol. Microbiol. 104: 365-376. https://doi.org/10.1111/mmi.13634
  50. Thiran E, Di Ciccio PA, Graber HU, Zanardi E, Ianieri A, Hummerjohann J. 2018. Biofilm formation of Staphylococcus aureus dairy isolates representing different genotypes. J. Dairy Sci. 101: 1000-1012. https://doi.org/10.3168/jds.2017-13696
  51. Rosini R, Margarit I. 2015. Biofilm formation by Streptococcus agalactiae: Influence of environmental conditions and implicated virulence factor. Front. Cell. Infect. Microbiol. 5: 6.
  52. Sohail MN, Rathnamma D, Isloor S, Veeregowda B, Sharada R. 2019. Detection of biofilm formation ability of Streptococcus agalactiae isolated from bovine mastitis cases. Int. J. Farm Sci. 9: 107.
  53. Sakamoto T, Ennifar E, Nakamura Y. 2018. Thermodynamic study of aptamers binding to their target proteins. Biochimie 145: 91-97. https://doi.org/10.1016/j.biochi.2017.10.010
  54. Bayrac AT, Donmez SI. 2018. Selection of DNA aptamers to Streptococcus pneumonia and fabrication of graphene oxide based fluorescent assay. Anal. Biochem. 556: 91-98. https://doi.org/10.1016/j.ab.2018.06.024
  55. Ozalp VC, Bilecen K, Kavruk M, Avni Oktem H. 2013. Antimicrobial aptamers for detection and inhibition of microbial pathogen growth. Future Microbiol. 8: 387-401. https://doi.org/10.2217/fmb.12.149
  56. Giacomucci S, Cros CDN, Perron X, Mathieu-Denoncourt A, Duperthuy M. 2019. Flagella-dependent inhibition of biofilm formation by sub-inhibitory concentration of polymyxin B in Vibrio cholerae. PLoS One 14: e0221431.
  57. Shatila F, Yalcin HT, Yasa I. 2019. Insight on microbial biofilms and recent antibiofilm approaches. Acta Biologica Turcica 32: 220-235.
  58. Ommen P, Hansen L, Hansen BK, Vu-Quang H, Kjems J, Meyer RL. 2022. Aptamer-Targeted Drug Delivery for Staphylococcus aureus biofilm. Front. Cell. Infect. Microbiol. 12: 814340.
  59. Meyer C, Hahn U, Rentmeister A. 2011. Cell-specific aptamers as emerging therapeutics. J. Nucleic Acids 2011: 904750.
  60. Kalra P, Dhiman A, Cho WC, Bruno JG, Sharma TK. 2018. Simple methods and rational design for enhancing aptamer sensitivity and specificity. Front. Mol. Biosci. 5: 41.
  61. Soundy J, Day D. 2017. Selection of DNA aptamers specific for live Pseudomonas aeruginosa. PLoS One 12: e0185385.
  62. Ni S, Zhuo Z, Pan Y, Yu Y, Li F, Liu J, et al. 2021. Recent Progress in aptamer discoveries and modifications for therapeutic applications. ACS Appl. Mater. Interfaces 13: 9500-9519. https://doi.org/10.1021/acsami.0c05750
  63. Rahimizadeh K, Al Shamaileh H, Fratini M, Chakravarthy M, Stephen M, Shigdar S, et al. 2017. Development of cell-specific aptamers: Recent advances and insight into the selection procedures. Molecules 22: 2070.
  64. Hasegawa H, Savory N, Abe K, Ikebukuro K. 2016. Methods for improving aptamer binding affinity. Molecules 21: 421.