Browse > Article
http://dx.doi.org/10.48022/mbl.2206.06001

Antibiofilm Activity and Binding Specificity of Polyclonal DNA Aptamers on Staphylococcus aureus and Escherichia coli  

Arizah Kusumawati (Study Program of Veterinary Public Health, IPB Graduate School, IPB University)
Apon Zaenal Mustopa (Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN))
Rifqiyah Nur Umami (Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN))
Adi Santoso (Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN))
I Wayan Teguh Wibawan (Department of Animal Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University)
Agus Setiyono ( Department of Veterinary Clinic Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University)
Mirnawati Bachrum Sudarwanto (Department of Animal Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University)
Publication Information
Microbiology and Biotechnology Letters / v.50, no.3, 2022 , pp. 328-336 More about this Journal
Abstract
Aptamers are short, chemically synthesized, single-stranded DNA or RNA oligonucleotides that fold into unique three-dimensional structures. In this study, we aim to determine the antibiofilm activity and binding specificity of the six polyclonal DNA aptamers (S15K3, S15K4, S15K6, S15K13, S15K15, and S15K20) on Staphylococcus aureus BPA-12 and Escherichia coli EPEC 4. Aptamer S15K6 showed the highest percentage of antibiofilm activity against S. aureus BPA-12 (37.4%) as shown by the lowest OD570 value of 0.313. Aptamer S15K20 showed the highest percentage of antibiofilm activity against E. coli EPEC 4 (15.4%) as shown by the lowest OD570 value of 0.515. Aptamers S15K13 and S15K20 showed antibiofilm activities against both S. aureus BPA-12 and E. coli EPEC4, and thus potentially have broad reactivity. Furthermore, based on the binding capacity and Kd values from our previous study, the binding specificity assay of selected polyclonal DNA aptamers (S15K3 and S15K15) against S. aureus BPA-12, E. coli EPEC 4, S. aureus BPA-6, S. agalactiae, E. coli MHA-6, and Listeria monocytogenes were performed using qPCR. Aptamers S15K3 and S15K15 showed specific binding to S. aureus BPA-12, E. coli EPEC 4, S. aureus BPA-6, and S. agalactiae, but could not bind to E. coli MHA-6 and L. monocytogenes. Therefore, this study showed that the polyclonal DNA aptamers have antibiofilm activity and were able to bind to S. aureus BPA-12 and E. coli EPEC 4 bacteria.
Keywords
DNA aptamer; antibiofilm; qPCR; 16S rRNA analysis;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Jenkins C, Rentenaar R, Landraud L, Brisse S. 2017. Enterobacteriaceae. Clin. Microbiol. Bact. pp. 1565-1578.
2 Dogan B, Klaessig S, Rishniw M, Almeida RA, Oliver SP, Simpson K, et al. 2006. Adherent and invasive Escherichia coli are associated with persistent bovine mastitis. Vet. Microbiol. 116: 270-282.   DOI
3 Fahim KM, Ismael E, Khalefa HS, Farag HS, Hamza DA. 2019. Isolation and characterization of E. coli strains causing intramammary infections from dairy animals and wild birds. Int. J. Vet. Sci. Med. 7: 61-70.   DOI
4 Suojala L, Kaartinen L, Pyorala S. 2013. Treatment for bovine Escherichia coli mastitis - an evidence-based approach. J. Vet. Pharmacol. Ther. 36: 521-531.   DOI
5 Hunt K, Drummond N, Murphy M, Butler F, Buckley J, Jordan K. 2012. A case of bovine raw milk contamination with Listeria monocytogenes. Ir. Vet. J. 65: 18-20.   DOI
6 Sarkar S. 2015. Microbiological considerations: Pasteurized milk. Int. J. Dairy Sci. 10: 206-218.   DOI
7 Rodriguez C, Taminiau B, Garcia-Fuentes E, Daube G, Korsak N. 2021. Listeria monocytogenes dissemination in farming and primary production: Sources, shedding and control measures. Food Control 120: 107540.
8 Skowron K, Sekowska A, Kaczmarek A, Grudlewska K, Budzynska A, Bialucha A, et al. 2019. Comparison of the effectiveness of dipping agents on bacteria causing mastitis in cattle. Ann. Agric. Environ. Med. 26: 39-45.   DOI
9 Addis MF, Cubeddu T, Pilicchi Y, Rocca S, Piccinini R. 2019. Chronic intramammary infection by Listeria monocytogenes in a clinically healthy goat - A case report. BMC Vet. Res. 15: 229.
10 Varhimo E, Varmanen P, Fallarero A, Skogman M, Pyorala S, Iivanainen A, et al. 2011. Alpha- and β-casein components of host milk induce biofilm formation in the mastitis bacterium Streptococcus uberis. Vet. Microbiol. 149: 381-389.   DOI
11 Sharun K, Dhama K, Tiwari R, Gugjoo MB, Iqbal Yatoo M, Patel SK, et al. 2021. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Vet. Q. 41: 107-136.   DOI
12 Nimjee SM, White RR, Becker RC, Sullenger BA. 2017. Aptamers as therapeutics. Annu. Rev. Pharmacol. Toxicol. 57: 61-79.   DOI
13 Torres-Chavolla E, Alocilja EC. 2009. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 24: 3175-3182.   DOI
14 Li D, Liu L, Huang Q, Tong T, Zhou Y, Li Z, et al. 2021. Recent advances on aptamer-based biosensors for detection of pathogenic bacteria. World J. Microbiol. Biotechnol. 37: 45.
15 Ning Y, Cheng L, Ling M, Feng X, Chen L, Wu M, et al. 2015. Efficient suppression of biofilm formation by a nucleic acid aptamer. Pathog. Dis. 73: ftv034.
16 Zhao M, Li W, Liu K, Li H, Lan X. 2019. C4-HSL aptamers for blocking qurom sensing and inhibiting biofilm formation in Pseudomonas aeruginosa and its structure prediction and analysis. PLoS One 14: e0212041.
17 Kusumawati A, Mustopa AZ, Wibawan IWT, Setiyono A. 2022. A sequential toggle cell - SELEX DNA aptamer for targeting Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli bacteria. J. Genet. Eng. Biotechnol. 20: 95.
18 Mustopa AZ, Puspitasari IF, Fatimah, Triratna L, Kartina G. 2018. Genetic diversity of mastitis cow's milk bacteria based on RAPD-PCR. Biodiversitas 19: 1714-1721.   DOI
19 Oroh SB, Mustopa AZ, Budiarti S, Budiarto BR. 2020. Inhibition of enteropathogenic Escherichia coli biofilm formation by DNA aptamer. Mol. Biol. Rep. 47: 7567-7573.   DOI
20 Mustopa AZ, Fatimah F. 2014. Diversity of lactic acid bacteria isolated from indonesian traditional fermented foods. Microbiol. Indones. 8: 48-57.   DOI
21 Mladenovic K, Muruzovic M, Zugic-Petrovic T, Comic L. 2018. The influence of environmental factors on the planktonic growth and biofilm formation of Escherichia coli. Kragujev. J. Sci. 40: 205-216.   DOI
22 Shatila F, Yasa I, Yalcin HT. 2020. Inhibition of Salmonella enteritis-dis biofilms by Salmonella invasion protein-targeting aptamer. Biotechnol. Lett. 42: 1963-1974.   DOI
23 Monistero V, Graber HU, Pollera C, Cremonesi P, Castiglioni B, Bottini E, et al. 2018. Staphylococcus aureus isolates from bovine mastitis in eight countries: Genotypes, detection of genes encoding different toxins and other virulence genes. Toxins (Basel) 10: 247.
24 Ote I, Taminiau B, Duprez JN, Dizier I, Mainil JG. 2011. Genotypic characterization by polymerase chain reaction of Staphylococcus aureus isolates associated with bovine mastitis. Vet. Microbiol. 153: 285-292.   DOI
25 Pang M, Sun L, He T, Bao H, Zhang L, Zhou Y, et al. 2017. Molecular and virulence characterization of highly prevalent Streptococcus agalactiae circulated in bovine dairy herds. Vet. Res. 48: 65.
26 Keefe G. 2012. Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis. Vet. Clin. North Am. - Food Anim. Pract. 28: 203-216.   DOI
27 Sukhnanand S, Dogan B, Ayodele MO, Zadoks RN, Craver MPJ, Dumas NB, et al. 2005. Molecular subtyping and characterization of bovine and human Streptococcus agalactiae isolates. J. Clin. Microbiol. 43: 1177-1186.   DOI
28 Bradley AJ, Green MJ. 2001. Adaptation of Escherichia coli to the bovine mammary gland. J. Clin. Microbiol. 39: 1845-1849.   DOI
29 Kabelitz T, Aubry E, van Vorst K, Amon T, Fulde M. 2021. The role of Streptococcus spp. in bovine mastitis. Microorganisms 9: 1497.
30 Fernandes JBC, Zanardo LG, Galvao NN, Carvalho IA, Nero LA, Moreira MAS. 2011. Escherichia coli from clinical mastitis: serotypes and virulence factors. J. Vet. Diagn. Investig. 23: 1146-1152.   DOI
31 Milanov D, Prunic B, Velhner M, Todorovic D, Polacek V. 2015. Investigation of biofilm formation and phylogenetic typing of Escherichia coli strains isolated from milk of cows with mastitis. Acta Vet. Brno. 65: 202-216.   DOI
32 Pedersen RR, Kromker V, Bjarnsholt T, Dahl-Pedersen K, Buhl R, Jorgensen E. 2021. Biofilm research in bovine mastitis. Front. Vet. Sci. 8: 656810.
33 Gomes F, Saavedra MJ, Henriques M. 2016. Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms. Pathog. Dis. 74: ftw006.
34 Abril AG, Villa TG, Barros-Velazquez J, Canas B, Sanchez-Perez A, Calo-Mata P, et al. 2020. Staphylococcus aureus exotoxins and their detection in the dairy industry and mastitis. Toxins (Basel) 12: 537.
35 Lister JL, Horswill AR. 2014. Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Front. Cell. Infect. Microbiol. 4: 178.
36 Moormeier DE, Bayles KW. 2017. Staphylococcus aureus biofilm: a complex developmental organism. Mol. Microbiol. 104: 365-376.   DOI
37 Thiran E, Di Ciccio PA, Graber HU, Zanardi E, Ianieri A, Hummerjohann J. 2018. Biofilm formation of Staphylococcus aureus dairy isolates representing different genotypes. J. Dairy Sci. 101: 1000-1012.   DOI
38 Sakamoto T, Ennifar E, Nakamura Y. 2018. Thermodynamic study of aptamers binding to their target proteins. Biochimie 145: 91-97.   DOI
39 Rosini R, Margarit I. 2015. Biofilm formation by Streptococcus agalactiae: Influence of environmental conditions and implicated virulence factor. Front. Cell. Infect. Microbiol. 5: 6.
40 Sohail MN, Rathnamma D, Isloor S, Veeregowda B, Sharada R. 2019. Detection of biofilm formation ability of Streptococcus agalactiae isolated from bovine mastitis cases. Int. J. Farm Sci. 9: 107.
41 Bayrac AT, Donmez SI. 2018. Selection of DNA aptamers to Streptococcus pneumonia and fabrication of graphene oxide based fluorescent assay. Anal. Biochem. 556: 91-98.   DOI
42 Ozalp VC, Bilecen K, Kavruk M, Avni Oktem H. 2013. Antimicrobial aptamers for detection and inhibition of microbial pathogen growth. Future Microbiol. 8: 387-401.   DOI
43 Giacomucci S, Cros CDN, Perron X, Mathieu-Denoncourt A, Duperthuy M. 2019. Flagella-dependent inhibition of biofilm formation by sub-inhibitory concentration of polymyxin B in Vibrio cholerae. PLoS One 14: e0221431.
44 Shatila F, Yalcin HT, Yasa I. 2019. Insight on microbial biofilms and recent antibiofilm approaches. Acta Biologica Turcica 32: 220-235.
45 Ommen P, Hansen L, Hansen BK, Vu-Quang H, Kjems J, Meyer RL. 2022. Aptamer-Targeted Drug Delivery for Staphylococcus aureus biofilm. Front. Cell. Infect. Microbiol. 12: 814340.
46 Meyer C, Hahn U, Rentmeister A. 2011. Cell-specific aptamers as emerging therapeutics. J. Nucleic Acids 2011: 904750.
47 Kalra P, Dhiman A, Cho WC, Bruno JG, Sharma TK. 2018. Simple methods and rational design for enhancing aptamer sensitivity and specificity. Front. Mol. Biosci. 5: 41.
48 Rahimizadeh K, Al Shamaileh H, Fratini M, Chakravarthy M, Stephen M, Shigdar S, et al. 2017. Development of cell-specific aptamers: Recent advances and insight into the selection procedures. Molecules 22: 2070.
49 Soundy J, Day D. 2017. Selection of DNA aptamers specific for live Pseudomonas aeruginosa. PLoS One 12: e0185385.
50 Ni S, Zhuo Z, Pan Y, Yu Y, Li F, Liu J, et al. 2021. Recent Progress in aptamer discoveries and modifications for therapeutic applications. ACS Appl. Mater. Interfaces 13: 9500-9519.   DOI
51 Hasegawa H, Savory N, Abe K, Ikebukuro K. 2016. Methods for improving aptamer binding affinity. Molecules 21: 421.
52 Hossain M. 2017. Bovine mastitis and its therapeutic strategy doing antibiotic sensitivity test. Austin J. Vet. Sci. Anim. Husb. 4: id1030.
53 Kaczorowski L, Powierska-Czarny J, Wolko L, Piotrowska-Cyplik A, Cyplik P, Czarny J. 2022. The influence of bacteria causing subclinical mastitis on the structure of the cow's milk microbiome. Molecules 27: 1829.
54 Duse A, Persson-Waller K, Pedersen K. 2021. Microbial aetiology, antibiotic susceptibility and pathogen-specific risk factors for udder pathogens from clinical mastitis in dairy cows. Animals 11: 2113.
55 Pereira UP, Oliveira DGS, Mesquita LR, Costa GM, Pereira LJ. 2011. Efficacy of Staphylococcus aureus vaccines for bovine mastitis: A systematic review. Vet. Microbiol. 148: 117-124.   DOI
56 Raza A, Muhammad G, Sharif S, Atta A. 2013. Biofilm producing Staphylococcus aureus and bovine mastitis: A review. Mol. Microbiol. Res. 3: 1-8.
57 Botelho ACN, Ferreira AFM, Fracalanzza SEL, Teixeira LM, Pinto TCA. 2018. A perspective on the potential zoonotic role of Streptococcus agalactiae: Searching for a missing link in alternative transmission routes. Front. Microbiol. 9: 608.
58 Cheng WN, Han SG. 2020. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review. Asian-Austral-Asian J. Anim. Sci. 33: 1699-1713.   DOI
59 Yang Y, Liu Y, Ding Y, Yi L, Ma Z, Fan H, et al. 2013. Molecular characterization of Streptococcus agalactiae isolated from bovine mastitis in Eastern China. PLoS One 8: e67755.
60 Arpini C, Cardoso P, Paiva M, da Costa Custodio D, da Costa G. 2016. Virulence genes of the Streptococcus agalactiae associated with bovine mastitis in Minas Gerais Livestock Herds, Brazil. Appl. Microbiol. 2: 1000119.
61 Hernandez L, Bottini E, Cadona J, Cacciato C, Monteavaro C, Bustamante A, et al. 2021. Multidrug resistance and molecular characterization of Streptococcus agalactiae isolates from dairy cattle with mastitis. Front. Cell. Infect. Microbiol. 11: 647324.
62 Jorgensen HJ, Nordstoga AB, Sviland S, Zadoks RN, Solverod L, Kvitle B, et al. 2016. Streptococcus agalactiae in the environment of bovine dairy herds - rewriting the textbooks? Vet. Microbiol. 184: 64-72.   DOI
63 Gunther J, Esch K, Poschadel N, Petzl W, Zerbe H, Mitterhuemer S, et al. 2011. Comparative kinetics of Escherichia coli and Staphylococcus aureus specific activation of key immune pathways in mammary epithelial cells demonstrates that S. aureus elicits a delayed response dominated by interleukin-6 (IL-6) but not by IL1A or tumor necrosis factor alpha. Infect. Immun. 79: 695-707.   DOI
64 Gie J, Drastini Y. 2016. Escherichia coli O157:H7 in milk of cows and the farm environment. Indones. J. Vet. Sci. 9: 174-177.