Browse > Article
http://dx.doi.org/10.5483/BMBRep.2015.48.4.277

Therapeutic aptamers: developmental potential as anticancer drugs  

Lee, Ji Won (Research Institute, National Cancer Center)
Kim, Hyun Jung (Research Institute, National Cancer Center)
Heo, Kyun (Research Institute, National Cancer Center)
Publication Information
BMB Reports / v.48, no.4, 2015 , pp. 234-237 More about this Journal
Abstract
Aptamers, composed of single-stranded DNA or RNA oligonucleotides that interact with target molecules through a specific three-dimensional structure, are selected from pools of combinatorial oligonucleotide libraries. With their high specificity and affinity for target proteins, ease of synthesis and modification, and low immunogenicity and toxicity, aptamers are considered to be attractive molecules for development as anticancer therapeutics. Two aptamers - one targeting nucleolin and a second targeting CXCL12 - are currently undergoing clinical trials for treating cancer patients, and many more are under study. In this mini-review, we present the current clinical status of aptamers and aptamer-based cancer therapeutics. We also discuss advantages, limitations, and prospects for aptamers as cancer therapeutics. [BMB Reports 2015; 48(4): 234-237]
Keywords
Application; Aptamer; Cancer; Oligonucleotide; Therapeutics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Scott AM, Wolchok JD and Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12, 278-287   DOI   ScienceOn
2 Liu JKH (2014) The history of monoclonal antibody development - Progress, remaining challenges and future innovations. Ann Med Surg 3, 113-116   DOI
3 Chames P, Van Regenmortel M, Weiss E and Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157, 220-233   DOI   ScienceOn
4 Tabrizi M, Bornstein GG and Suria H (2010) Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J 12, 33-43   DOI
5 Miller MJ, Foy KC and Kaumaya PT (2013) Cancer immunotherapy: present status, future perspective, and a new paradigm of peptide immunotherapeutics. Discov Med 15, 166-176
6 Jain RK and Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7, 653-664   DOI
7 Beckman RA, Weiner LM and Davis HM (2007) Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer 109, 170-179   DOI   ScienceOn
8 Sung HJ, Choi S, Lee JW et al (2014) Inhibition of human neutrophil activity by an RNA aptamer bound to interleukin-8. Biomaterials 35, 578-589   DOI   ScienceOn
9 Kong HY and Byun J (2013) Nucleic Acid aptamers: new methods for selection, stabilization, and application in biomedical science. Biomol Ther 21, 423-434   DOI   ScienceOn
10 Kim YH, Sung HJ, Kim S et al (2011) An RNA aptamer that specifically binds pancreatic adenocarcinoma up-regulated factor inhibits migration and growth of pancreatic cancer cells. Cancer Lett 313, 76-83   DOI   ScienceOn
11 Tuerk C and Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510   DOI
12 Keefe AD, Pai S and Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9, 537-550   DOI   ScienceOn
13 Sun H, Zhu X, Lu PY, Rosato RR, Tan W and Zu Y (2014) Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol Ther Nucleic Acids 3, e182   DOI
14 Dong Y, Xu Y, Yong W, Chu X and Wang D (2014) Aptamer and its potential applications for food safety. Crit Rev Food Sci Nutr 54, 1548-1561   DOI
15 Bates PJ, Laber DA, Miller DM, Thomas SD and Trent JO (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 86, 151-164   DOI   ScienceOn
16 Song KM, Lee S and Ban C (2012) Aptamers and Their Biological Applications. Sensors (Basel) 12, 612-631   DOI
17 Tan W, Wang H, Chen Y et al (2011) Molecular aptamers for drug delivery. Trends Biotechnol 29, 634-640   DOI   ScienceOn
18 Pendergrast PS, Marsh HN, Grate D, Healy JM and Stanton M (2005) Nucleic acid aptamers for target validation and therapeutic applications. J Biomol Tech 16, 224-234
19 Tajrishi MM, Tuteja R and Tuteja N (2011) Nucleolin: The most abundant multifunctional phosphoprotein of nucleolus. Commun Integr Biol 4, 267-275   DOI
20 Nagasawa T, Hirota S, Tachibana K et al (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635-638   DOI   ScienceOn
21 Zhu J, Huang H, Dong S, Ge L and Zhang Y (2014) Progress in aptamer-mediated drug delivery vehicles for cancer targeting and its implications in addressing chemotherapeutic challenges. Theranostics 4, 931-944   DOI   ScienceOn
22 Laber DA, Sharma VR, Bhupalam L, Taft B, Hendler FJ and Barnhart KM (2005) Update on the first phase I study of AGRO100 in advanced cancer. J Clin Oncol 23, 3064   DOI
23 Ni X, Castanares M, Mukherjee A and Lupold SE (2011) Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 18, 4206-4214   DOI
24 Sun X, Cheng G, Hao M et al (2010) CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 29, 709-722   DOI
25 Zhou J and Rossi JJ (2014) Cell-type-specific, Aptamerfunctionalized Agents for Targeted Disease Therapy. Mol Ther Nucleic Acids 3, e169   DOI   ScienceOn
26 Shum KT, Zhou J and Rossi JJ (2013) Nucleic Acid Aptamers as Potential Therapeutic and Diagnostic Agents for Lymphoma. J Cancer Ther 4, 872-890   DOI
27 Hoellenriegel J, Zboralski D, Maasch C et al (2014) The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization. Blood 123, 1032-1039   DOI   ScienceOn
28 Liu SC, Alomran R, Chernikova SB et al (2014) Blockade of SDF-1 after irradiation inhibits tumor recurrences of autochthonous brain tumors in rats. Neuro Oncol 16, 21-28   DOI   ScienceOn
29 Bruno JG (2013) A review of therapeutic aptamer conjugates with emphasis on new approaches. Pharmaceuticals (Basel) 6, 340-357   DOI   ScienceOn
30 McNamara JO, Andrechek ER, Wang Y et al (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24, 1005-1015   DOI   ScienceOn
31 Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA and Langer R (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64, 7668-7672   DOI   ScienceOn
32 Farokhzad OC, Cheng J, Teply BA et al (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103, 6315-6320   DOI   ScienceOn
33 Yu C, Hu Y, Duan J et al (2011) Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS One 6, e24077   DOI
34 Griffin LC, Tidmarsh GF, Bock LC, Toole JJ and Leung LL (1993) In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood 81, 3271-3276
35 Leal M, Sapra P, Hurvitz SA et al (2014) Antibody-drug conjugates: an emerging modality for the treatment of cancer. Ann N Y Acad Sci 1321, 41-54   DOI   ScienceOn
36 Perez HL, Cardarelli PM, Deshpande S et al (2014) Antibody-drug conjugates: current status and future directions. Drug Discov Today 19, 869-881   DOI   ScienceOn
37 Shigdar S, Macdonald J, O'Connor M et al (2013) Aptamers as theranostic agents: modifications, serum stability and functionalisation. Sensors (Basel) 13, 13624-13637   DOI
38 Davydova AS, Vorobjeva MA and Venyaminova AG (2011) Escort aptamers: new tools for the targeted delivery of therapeutics into cells. Acta Naturae 3, 12-29
39 Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR and Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5, 123-132   DOI   ScienceOn
40 Burmeister PE, Lewis SD, Silva RF et al (2005) Direct in vitro selection of a 2'-O-methyl aptamer to VEGF. Chem Biol 12, 25-33   DOI   ScienceOn
41 Lakhin AV, Tarantul VZ and Gening LV (2013) Aptamers: problems, solutions and prospects. Acta Naturae 5, 34-43
42 Healy JM, Lewis SD, Kurz M et al (2004) Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res 21, 2234-2246   DOI
43 Ruggiero A, Villa CH, Bander E et al (2010) Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci U S A 107, 12369-12374   DOI   ScienceOn
44 Kaiser PK, Cruess AF, Bogaert P, Khunti K and Kelly SP (2012) Balancing risk in ophthalmic prescribing: assessing the safety of anti-VEGF therapies and the risks associated with unlicensed medicines. Graefes Arch Clin Exp Ophthalmol 250, 1563-1571   DOI
45 Shapiro A and Lafond A (2012) Anti-VEGF state of the union. Retina Today Jan/Feb, 32-34