본 논문은 근사화 기법을 RLS 알고리즘에 적용한 고속 적응 알고리즘을 제안한다. 제안 알고리즘(D-RLS)은 QR 분해 RLS 알고리즘 유도 과정을 RLS 알고리즘으로부터 역으로 유도한 알고리즘이다. 유도된 알고리즘(D-RLS)은 입력 신호들이 서로 분리되어 있다는 가정을 사용한 알고리즘과 유사한 형태를 취한다. 이 알고리즘의 계산량은 $O(N^2)$ 보다 작은 O(N)이다. 이 알고리즘의 성능 평가를 위하여 FIR 시스템과 비선형(Volterra) 시스템의 시스템 식별 기법을 이용하였으며, 결과적으로 우수한 성능을 나타냄을 확인하였다.
본 논문은 레일레이 페이딩 채널 환경에서 IMT-2000 파일럿 심볼 구조의 W-CDMA 시스템 역방향 링크의 채널 추정에 관한 RLS 적응형 알고리즘 성능을 WMSA(K=1,3)와 Constant gain 방식의 성능과 비교 분석하였다. 본 논문의 모델은 IMT-2000 시스템 규격의 W-CDMA 채널 구조, 변조 및 파일럿 패턴을 이용하였다. 파일럿 심볼 위치의 채널추정은 RLS 적응형 알고리즘을 이용하고 데이터 심볼 위치의 채널 보상은 선형보간으로 수행하였다. RLS 적응형 알고리즘 성능은 저속 페이딩에서 WMSA(K=1,3) 성능과 유사하지만 Constant gain 알고리즘 성능보다는 약간 우수하다. 도플러 주파수 320㎐, BER=2.0×10/sup -2/에서 RLS 적응형 알고리즘 성능이 WMSA(K=1)과 Constant gain 성능에 비해 4㏈의 성능 우위를 보여주고 있으며, WMSA(K=3)의 성능과는 커다란 차이를 보여준다. 따라서 페이딩이 고속화 될수록 RLS 알고리즘 의 성능이 전반적으로 WMSA(K=1,3)와 Constant gain 알고리즘 성능보다 우수함을 확인하였다.
RLS (Recursive Least Squares) 알고리즘은 적응 알고리즘의 대표적인 알고리즘이다. 하지만, 기본적인 RLS 알고리즘은 빠르게 움직이는 신호와 같은 비정상 (non-stationary) 신호환경에서는 좋은 성능을 가질 수 없다는 단점이 있다. 이를 해결하기 위하여 가변 망각 인자를 가지는 RLS 알고리즘이 등장하였으나, 기존의 가변 망각 인자 RLS 알고리즘은 연산량이 너무 많다는 단점이 있다. 본 논문에서는 이를 해결하기 위하여, 상대적으로 적은 연산량으로 AFF-RLS 알고리즘과 비슷한 성능을 내는 RLS 알고리즘을 제안한다.
RLS algorithms are required for applications to adaptive line enhancers, adaptive equalizers for voiceband telephone and HF modems, and wide-badn digital spectrum mobile raio in which their convergence time and tracking speed are significant. The fast QR RLS algorithm satisfies above the requirements. Its computational complexity is linearly proportional to the tap number of a filter, N and its performance remains numerically stable. From the result of simumulation, the fast QR RLS algorithm represented Cioffi is better than gradient based algorithm in its initial performance when being applied to an adaptive line enhancer for cancelling noise.
본 논문에서는 IEEE802.15.3(HDR-WPAN) 시스템에서 LMS 알고리즘과 RLS 알고리즘의 성능을 비교 분석하였다. LMS 알고리즘은 구현하기가 쉽고 계산량이 적은 장점이 있는 반면, 수렴 속도가 느리며, RLS 알고리즘은 계산량이 많으나, 수렴속도가 빠른 장점을 가지고 있다. HDR-WPAM 시스템을 기반으로 같은 환경 하에서 LMS 알고리즘을 사용했을 경우 250 샘플 이후에 채널에 적응된 등화가 이루어졌고 RLS 알고리즘을 사용했을 경우 50 샘플 이후에 등화가 이루어 졌다. 이를 통해, HDR-WPAN 시스템에서 보다 안정적이며, 빠른 등화 처리를 위해서는 LMS 알고리즘보다 RLS 알고리즘을 통한 적응 등화 구현이 효과적임을 시뮬레이션을 통해 확인하였다.
In this paper, we present an effective RLS algorithm with forgetting factor of Erlang function for the system identification. In the proposed algorithm, the forgetting factor decreases monotonically in the first stage, and then it increases monotonically in the second stage in contrary to the conventional forgetting factor RLS algorithms. In addition, annealing effect and an asymptotically stability of the proposed algorithm is discussed based on the analysis of convergency property on. Simulation results for the system identification problem indicate the superiority of the proposed algorithm in comparison to the RLS algorithm such as NLMS and Kalman filter based algorithm.
The set of admissible time-variations in the input signal can be separated into two categories : slow parameter changes and large parameter changes which occur infrequently. A common approach used in the tracking of slowly time-varying parameters is the exponential recursive least-squares(RLS) algorithm. There have been a variety of research works on the error analysis of the exponential RLS algorithm for the slowly time-varying parameters. In this paper, the focus has been given to the error analysis of exponential RLS algorithms for the input data with abrupt property changes. The voiced speech signal is chosen as the principal application. In order to analyze the error performance of the exponential RLS algorithm, deterministic properties of the exponential RLS algorithms is first analyzed for the case of abrupt parameter changes, the impulsive input(or error variance) synchronous to the abrupt change of parameter vectors actually enhances the convergence of the exponential RLS algorithm. The analysis has also been verified through simulations on the synthetic speech signal.
In this Paper, we propose an algorithm called partitioned recursive least square (PRLS) that involves a procedure that partitions a large data matrix into small matrices, applies RLS scheme in each of the small sub matrices and assembles the whole size estimation vector by concatenation of the sub-vectors from RLS output of sub matrices. Thus, the algorithm should be less complex than the conventional RLS and maintain an almost compatible estimation performance.
RLS 알고리즘은 스마트 안테나에서 가중치 벡터를 갱신하기 위한 적응형 배열 안테나 알고리즘으로서 배열안테나 출력신호와 송신기에서 보내주는 학습 신호열의 차를 이용한다. 본 논문에서 제안된 알고리즘은 RLS 알고리즘을 기반으로 하고 블라인드 적응형 알고리즘 방법을 응용하여 구한 참조신호를 사용하여 오류신호를 구하였다. 그리고 모의실험을 통해 제안된 알고리즘이 기존의 블라인드 적응형 알고리즘(LS-DRMTA, LS-DRMTCMA)보다 BER 기준에서 사용자 수용비율이 67∼74%정도 향상 되었음을 확인하였고 빔패턴을 도시하여, 빔이 원하는 신호와 간섭신호에 올바르게 형성하는지 알아보았다
적응 횡단선 필터에서 수렴 속도의 개선을 위해 기존의 최소 평균 자승 알고리즘을 확장한 반복적 최소 자승 알고리즘의 탭 가중치 갱신 메커니즘에 재순환 데이터 버퍼를 이용함으로서 수렴특성을 개선시키는 효율적인 기법을 제시하였다. 본 논문은 기존의 적응 횡단선 필터에 데이터 재순환 버퍼 구조를 제안하여 새로운 RLS 탭 가중치 갱신 알고리즘을 유도하여 조화 평균 학습 곡선의 평균 자승 에러 값에 대한 반복수에 대해서 데이터 재순환 버퍼를 사용한 학습 곡선의 수렴 속도가 버퍼가 없는 경우의 재순환 버퍼 RLS 알고리즘의 수렴 속도보다 비례하여 빠르게 수렴한다는 것을 수학적인 연산을 통해 증명하였다. 채널 진폭의 왜곡의 정도와 재순환 데이터 버퍼 수에 따른 평균 자승 에러에 대한 삼차원 시뮬레이션 결과로부터 고유치 확산이 증가함에 따라 특정 값에 수렴하기 위한 요구된 샘플의 반복수가 비례하여 증가하였으며, 재순환 데이터 버퍼 수 B가 증가함에 따라 요구된 샘플의 반복수가 B배만큼 감소함으로서 제안된 구조에서 RLS 가중치 갱신 알고리즘의 수렴특성이 개선됨을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.