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ABSTRACT

We extend the sue of the method of least square to develop a recursive algorithm for the design of adaptive transversal filters
such that, given the least-square estimate of this vector of the filter at iteration n-1, we may compute the updated estimate of this
vector at iteration n upon the arrival of new data. We begin the development of the RLS algorithm by reviewing some basic
relations that pertain to the method of least squares. Then, by exploiting a relation in matrix algebra known as the matrix
inversion lemma, we develop the RLS algorithm. An important feature of the RLS algorithm is that it utilizes information
contained in the input data, extending back to the instant of time when the algorithm is initiated.

In this paper, we propose new tap weight updated RLS algorithm in adaptive transversal filter with data-recycling buffer
structure. We prove that convergence speed of leaming curve of RLS algorithm with data-recycling buffer is faster than it of
exiting RLS algorithm to mean square error versus iteration number. Also the resulting rate of convergence is typically an order of
magnitude faster than the simple LMS algorithm. We show that the number of desired sample is portion to increase to converge
the specified value from the three dimension simulation result of mean square error according to the degree of channel amplitude
distortion and data-recycle buffer number. This improvement of convergence character in performance, is achieved at the B times
of convergence speed of mean square error increase in data recycle buffer number with new proposed RLS algorithm
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Adaptive filter are essential for meeting the need to
acquire more improved performance in digital signal
processing and communication systems. Also, adaptive
filter algorithms which have rapid convergence speed,
lower mean squared error(MSE) and practicality for
hardware implementation

We begin the development of the RLS algorithm by
reviewing some basic relations that pertain to the
method of least squares. Then, by exploiting a relation
in matrix algebra known as the matrix inversion
lemma, we develop the RLS algorithm An important
feature of the RLS algorithm is that it utilizes
information contained in the input data, extending back
to the instant of time when the algorithm is initiated.

In this paper, a simple and efficient technique for
rapid convergence speed of a transversal filter which
uses RLS algorithms is introduced. The basic idea of
the technique is the use the discarded data samples to
update the tap weight vector in a sample period This
can increase convergence speed by (B) times without
increasing the computational complexity substantially,
where B is the number of recycled data.

I|. Adaptive transversal filter

In Recursive implementations of the method of least
square, we start the computation with known initial
conditions and use the information contained in new
data samples to update the old estimates. We therefore
find that the length of observable data is valuable.
Accordingly, we express the cost function to be
minimized as &(n), where #is the variable length of
the observable data. Also, it is customary to introduce
a weighting factor into the definition of the cost
function &(#). We thus write

E(n) = g”;ﬂ(n,z)ne(mz (1)
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where e(?) is the difference between the desired
response d(7) and the output (7)) produced by a
transversal filter whose tap input equal (), u(z—1)
, ... u(i—M+1), as in Fig. 1

d(n)

Fig. 1 Adaptive transversal filter

That is, e(?) is defined by
e(?) = d(i) — (i) = d(3) — w(n)ul(3) 2

where (7 is the tap-input vector at time ¢
defined by

WD =[u(i), u(i—1),..., w(i—M+DIT 3

and w(n) is the tap-weight vector at time #,
defined by

wn)=[w,(n), w(n),..., wy_ (W17 4)

Note that the tap weights of the transversal filter
remain fixed during the observation interval 1<:<#
for which the cost function &(#)is defined

Ill. Proposed data recycling filter structure

We proposed the new data recycling filter
structure to improve convergency characteristic of
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recycling buffer RLS algorithm. Instead of using a
single «#(n) to update the tap weight vector, we
can use the discarded input data vector
wWn)— 1), u(n—2), u(n—3),... which are stored
in some finite buffers in multi linear feedback
adaptive transversal filter. The proposed structure
with the buffers used for recycling data and the
coefficient updating process are depicted in Fig 2.

I'__'_- L
+

s
Updating
*(n.3) to W(n.2)

|

Input Wytn-1.-1) Updating
data W(n,0) to W(n.-1)

Fig. 2 Adaptive transversal filter structure with
data-recycling buffer

For Simplicity, the proposed structure including just
two taps a and b is described Tap @ and b have
three recycling data(B=3) in their each buffers. Firstly,
the recycling data «(x—3) in the buffers of tap a

and  w(n—4) in the buffer of tap b are used to
update (%, 3)=[w(n—1,3)w(n—1,3)]" to

w(n,2)=[w(n—1,2),%(n—1,2)]" using emor
&(n,3).

Secondly, w( n, 2)=[We( n — 1, 2, Wy (n - 1,2)]7 is
update t0 W(n, D =[w(n—1,0,5(n—11)]"
using w(n—2)=[w(n—2),u(n—3)1" and &(n,2).
Finally, the data vector a(n—0)=[u(n—0), u(n—1)]7
and coefficient vector

W(n, 0O=[m(n—1,0,%(n—1,0]" produce

&(n,0). Now w(n,— 1) is copied to the TDL filter
coefficient vector 2(m+1), which will be used to
produce filter output.

Actually output estimation d@(#) of adaptive
transversal filter with recycling data buffer denoted in
Fig. 2, product tap input and tap weight vector, as
follows

M+l

an) = 3 win—Duln) = W n— 1) u(n) (5

A priori estimation error &(#) defined by difference
desired response d(#) and actually adaptive transversal

filter output @(#). We get the desired recursive
equation with data recycling buffer RLS algorithm for
updating the tap weight vector

W)= T n = v Cn) 3367, ) ©)

we may express the a priori estimation error &(#)
as

F6n) = eolm) = S W(n— 1, iy g uln—9
=¢y(n)— ZBfleH(n—l,i)u(n—i) - (D
where e(n—1) is the weight error vector at times

n—1

IV. Tap weight updating with RLS algorithm
in data recycling structures

As an index of statistical performance for the RLS
algorithm, it is convenient to use the a priori estimation
eror &(n) to define the mean—squared error

HOESWALOK! @®

The Prime in the symbol J(») is intended to
distinguish the mean-square value of &(#z) from
that of e(n). Substituting Eq.7) in Eq.8), and
then expanding terms, we get
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B
J(n) =H|e,(m?1+ Z"(E[u”(n—i)e(n—l, 7)

e (n—1,)uln—1]
— E e (n—1, Duln—dej(n)]

—Eley(mu(n—de(n—1,d1) (9

With the measurement ey(#) assumed to be of zero
mean, the first expectation on the right-hand side of
Eq.9). is simply the variance of ep(#), which is
denoted by ¢% The second expectation on the
right-hand side of Eq.(9), is the estimate w(#z—1, 7)
and therefore the weight-error vector e(n—1,17), is
independent of the tap-input vector «(#); the latter is
assumed to be drawn from a wide-sense stationary
process of zero mean. Hence, we may use this statistical
independence together with well-known results from
matrix algebra to express the second expectation on the
right-hand side of Eq.(9) as follows:

B
;ﬂ(u”(n— Deln—1,0 e (n—1,Du(n—19]

= gEItr{u”(n"z)e(n— LDeH(n—1,duln—d}]
= gﬂtr{u(n—z)u”(n—z)e(n—l, Net(n—1,H}]
= lZit?‘{ETu(n—z?u”(n—z)e(n—l, Nef (n—1,91)
B
= l;l‘r{E[u(n—- Duln—D]Ele(n—1, De¥(n—1, ]}

=§[tr{RK(n—1,D} (10)

where, in the last line, we have made use of the
definitions of the ensemble-averaged correlation matrix
R and weight-error correlation matrix K(z—1).

The measurement error e;(n) depends on the
tap-input vector (n). The weight-error vector
e(n~—1) is therefore independent of both (%)
and ey(n). Accordingly, we may show that the
third expectation on the right-hand side of Eq.(9)
is zero by first reformulating is as follows:
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gaeﬁ(n—1,z)u(n—z)eg(n)] an

= 3 HeH(n—1, D]ELuln— e (n)]

We now recognize form the principle of orthogonal
that all the elements of the tap-input vector u(n)

orthogonal to the measurement error ey(n). We
therefore have
jaeﬂ(n—l,z)u(n—z)eg(n)]=o (12)

The forth and final expectation on the right-hand
side of Fq.(9) has the same mathematical form as that
just considered in point 2, except for a trivial complex
conjugation. We may therefore set this expectation
equal to zero, too; )

jaeo(muﬁ(n—z)e(n—l,i)]=o (13)

Thus, recognizing that e(#)? is equal to ¢?, and
using the results of Eqs.(10) to (13) in (9), we get the
following simple formula for the mean-squared error in
the RLS algorithm

T(n)=+ BpLRE(n=1,1)] a4

We may express the weight-error correlation matrix
K(n) as
o

Kn)=—">"—R™!,

nwM+1

Next, substituting Eq.(15) in Eq.(14), we get for
A=1
n>M+1

J(my=c*+B—HT (16)

n—M-1"

Based on this result, we may make the following
deduction. The ensemble - averaged leamning curve of
the recycling buffer RLS algorithm converges more
rapidly B times, if proposed structure has the B
number of data recycling buffers. M, is denoted in
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Eq.(16), means the number of taps in the transversal
filter. This means that the rate of convergence of the
RLS algorithm is typically an order magnitude faster
than that of the LMS algorithm As the number of
iterations, #, approaches infinity, the mean-squared
error J(#n) approaches a final value equal to the
variance o% of the measurement error ey(#). In other
words the RLS algorithm, in theory, produce zero
excess mean-squared error when operating in a
stationary environment Convergence of the RLS
algorithm in the mean square is independent of the
eigenvalue of the ensemble-averaged correlation matrix
R of the input vector ().

V. Computer simulation result and analysis

For our computer simulation, we use recycling
buffer RLS algorithm to reject interference of channel
which produces in the adaptive equalization of a linear
dispersive commumication channel. Two independent
random-number generators are used. one, denoted by
x,, for probing the channel, and the other, denoted by
v(=n), for simulating the effect of additive white noise
at the receiver input. The sequency x, is a Bernoulli
sequence with x,=%1; the random variable x, has

zero mean and unit variance. The second sequency
v(n) has no zero mean; its varance ¢ s
determined by the desired signal to noise ratio. The
equlizer has 11 tap. The impulse response of the
channel is defined by

%[l-f-cos(%%(n'z))]» n=1,2,3

0, otherwise (1n

where W control the amount of amplitude distortion
produced by the channel.

Equivalently, the parameter W controls the
eigenvalue spread x(R) of the correlation matrix of
the tap inputs in the equalizer, with the eigenviaue
spread increasingly with W. The Sequence w(n),

produced by the second random generator, has the
zero mean and variance o =0.001.

The first tap input of the equalizer at time #
equals

w(n) = Z‘:lhka(n—k)-i-v(n) (18)

where all the parameter are real valued. Hence the
correlation matrix R of the tap inputs of the equalizer,
u(n), u(n—1), ..., u(n—10), is a symmetric 11 by
11 matrix. Also, Since the impulse response 4, has
non-zero values only for n=1,23 and the noise process
v(n) is white with zero mean and variance o° , the
correlator matrix R is quantdiagonal. That is the only
non-zero elements of R are on the main diagonal and
the four diagonals directly above and below it, two on
either sided, as shown by the special structure,
")y (1) H2) 0 - 0
1) »0) (1) ~«2) - 0

H2) AL A0) AL = 0
0" A2 AD A0) -+ 0

0 0 0 0 0)

where #0) = B+ hr+E+ 5,

1) =hy hy+ hyhy , H(2) = hhy. The variance
o = 0001, hence hk, h, hy are determined by the
value assigned to parameter W in Eq.(17). We have
obtained values of the autocorrelation function #(J)

with Eq.(17) and (19) for /=10,1,2 and the smallest
eigenvalue, A, the largest eigenvalue, A

and

the eigenvalue spread x(R)= A,/ 1.

Computer simulation with recycling buffer RLS
algorithm can use time variance of channel that inputs
in adaptive transversal filter. The impulse response of
channel is used in Eq.(18). The adaptive transvesal
filter with proposed recycling data buffer RLS
algorithm has 11 taps, and additive white Gaussian
noise variance, 6%, is 0.0001.

The result of the experiment for a fixed eigenvalue
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spread x(R)=8781699 and varying the number of
buffer were presented in Fig. 3. The four parts of that
figure correspond to the parameter B=0, 1, 4 9
respectively.
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Fig. 3. MSE leaming curves of RLS Algorithm with
number of taps M=11, standard deviation parameter
o= 0.01, eigenvalue spread x(R)=878.1699 and
recycling data Buffer B=0, 1, 4, 8

The result of the experiment for a fixed eigenvalue
spread x(R)=87816% and varying the number of
buffer were presented in Fig. 3. The four parts of that
figure parameter B=0,1,49
respectively. The result presented in Fig. 4 clearly
show that the superior rate of convergence of the
recycling buffer RLS algorithm with buffer over RLS
algorithm without buffer. The recycling buffer RLS
algorithm converges much faster B times than the
RLS algorithm  Convergence of the recycling buffer
RLS algorithm is attained in about 134, 67, 23, 15
iterations, correspondence to the four different values
of the buffer, that is ,B=0,1,49 respectively.

Finally, the new algorithm, recycling buffer RLS
algorithm, in proposed structure is prove to be efficient
to control of channel interference from the computer

correspond to  the
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simulation above.

B=0

Log of MSE

Log of MSE

Amplitude distoron (W)

Number of deratons

(b) B=1

Three dimension simulation denoted in Fig. 4 (a)
was typically result that was applied to the case of
bufferless in adaptive transversal filter with recycling
data buffer structure. This result is obtained from the
state of convergence of the mean square error is
correspondence  of  distortion of channel ~ which
controlled by the tap weight vector with error, the
difference actually estimation value and desired
response. X axis and y axis presented Fig. 4 means
the number of iteration of sample and degree of
amplitude distortion respectively.
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B=t

Log of MSE

Ampliide distorion
Nurnber of iterations P w0

Log of MSE

Amphitude distorion (W)

Number of iterations

(c) B=9

Fig. 4 Three dimensional simulation of MSE
learning curves of RLS algorithm with
number of taps M=11, standard deviation
parameter o= 001, varying amplitude
distortion w and recycling data buffer B =
01,49

For the computer simulation, the number of iteration

is set to 300, and amplitude distortion is established
from 1 to 4. z axis in Fig. 4 means log value of mean
square error. The simulation from Fig. 4(b) to Fig.
4(d) are presented convergence of MSE varying
eigenvalue spread x(R) correspondence amplitude

distortion, W. From the simulation result, we show
that value of MSE increase proportional to increasing
amplitude distortion. Also, simulation results Fig. 4(b),
Fig. 4(c) and Fig. 4(d) are presented to the case of
the number of data recycling buffer, B=4, 9, equivalent
above parameters, number of taps, white Gaussian
noise variance ¢° and eigenvalue spread x(R).

The result of the computer simulation demmonstrate
that the simulation results converges B times of
in accordance with recycling data
buffer B, for the controlling tap weight using recycling
buffer RLS algorithm in proposed structure.

convergence speed

Vi. Conclusion

We have presented efficient method for rapidly
adjusting the tap weight control with the recycling
data buffer in proposed structure. We begin the
development of the RLS algorithm by reviewing some
basic relations that pertain to the method of least
squares. Then, by exploiting a relation in matrix
algebra known as the matrix inversion lemma, we
develop the RLS algorithm. An important feature of
the RLS algorithm is that it utilizes information
contained in the input data, extending back to the
instant of time when the algorithm is initiated.

In this paper, we proposed new tap weight updated
RLS algorithm in adaptive transversal filter with
data-recycling buffer structure. We prove that
convergence speed of leaming curve of RLS algorithm
with data-recycling buffer is faster than it of exiting
RLS algorithm to mean square error versus iteration
number.

The result of the computer simulation demonstrate
that the simulation results converges B times of
convergence speed in accordance with recycling data
buffer B, for the controlling tap weight using recycling
buffer RLS algorithm in proposed structure.
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