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Abstract

In this Paper, we propose an algorithm called partitioned recursive least square (PRLS) that involves a procedure that 
partitions a large data matrix into small matrices, applies RLS scheme in each of the small sub matrices and assembles the 
whole size estimation vector by concatenation of the sub-vectors from RLS output of sub matrices. Thus, the algorithm 
should be less complex than the conventional RLS and maintain an almost compatible estimation performance.
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I. Introduction

Recursive Least Square (RLS) is one of the most 
frequently employed algorithms in adaptive signal 
processing and control. The algorithm, however, is very 
complex in that it makes it difficult to apply it to a large- 
scale model. This is mainly due to the inherent matrix 
inversion and its associated multiplications and divisions. 
Kamy and Warwick proposed a method to lessen the 
computational burden in a large model[l]. The method 
divides a large model into several low order models, 
estimates the partitioned low order parameters and then 
merges those low order models into a large model based on 
a general theory of pooling partial pieces of infbrmation[l]. 
This method needs mixing matrix to build the original 
model. Yu and Lee also proposed another partitioned 
algorithm in [2]. This algorithm has not a full recursive 
procedure.

In this Paper, we propose an algorithm named partitioned 
recursive least square (PRLS) in full recursive form, which 
involves a procedure that partitions a large data matrix into 
small matrices, applies RLS scheme in each of the small 
sub matrices and assembles the whole size estimation 
vector by concatenation of the sub-vectors from RLS 
output of sub matrices. Thus, by applying this procedure,
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the level of complexity will decrease. Here, we derive the 
PRLS algorithm and show the complexity reduction.

II. Problem Formulation

Considering the cost function as the mean square error,

J = E{|e(明， (1)

where e(t) = d(t) - y(t) = - wHu(Z) , the optimum
value of w for (1) is the solution of the following normal 
equation.

w = R；P, (2)

where Ru =E{u«)u&(f)} and P = (?)j . When

the input vector u(t) is partitioned into 
u(iz) 드 [u：0) L u二 (f)] , where u/t) is an 

Ni x 1 data vector, the autocorrelation matrix Ru can be 
rewritten as

R, (0 u?(7) L
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where R# = E^uz(0u^(o| for i, j = 1,2, ... , M. Let the 

vector P be correspondingly partitioned as follows:

Assume Awy = wy(0'W7(?-l) , is sm이 1, (8) can be 
approximated as

气(Z) = R；(0 - S Ry(0wy(t - l)j .

Applying the matrix inversion lemma to the R"1 (z) as 

R；0)= !(R；(t T) -K“(Ouf (OR-1 (Z 一 1)), (10)

(9)

P = E

U|W

u2(z) * p,
d (0 > = 2

M M[u也

where

(4)
/、 R71 (Z-l)u.(Z) -

K, (0 = ——疽「2느 R-* (z)u(. (?), 
人+ u%)R；(sl)u《)

the first term in (9) becomes

where P = £{斗《)4 (£)} and the superscript * denotes 

the complex conjugate. Substituting (3) and (4) into (2), the 
optimal vector w(t) can be expressed as follows: 

w =

W] -R” R12 L R. m iM

-1 -p」

W2 r21 R22 L R~ MIM p2
M M M M M M

_WM_ R._ M 1 RM Z L n 一匕
(5)

with

이 / M for i,J = 1,2, ... , M. (6)

The Proposed Algorithm: For recursive formulation, the 
cost function can be minimized in the method of 
exponentially weighted least squares in place of (1),

R；(/)P.(/)=源；(z)p.(z-l) + R：1 (z)u,.{t)d (/)

=R；" - 1)P, (f -1) - K,.; (Ouf (OR,；' (t - 1)P; (t -1)

+ R； (/)%.(£)/(£)
(11)

The second term in (9) also can be expressed as

R[(z) Z R,.(z)w.(r-1)= £ R；泠)R*)w*-1) 
丿니，丿0 丿늬"由'

= S 珥 «)(丿나* (f T) + % (r)u： (/))w .« - 1) 
j=\J 구:i

=丿(R：(' -1)、(I) - K„ (小：(，)R； (t - 1)R.. (t - 1)

+R；¥)u《)u；%)) w, - 1)) (12)

Substituting (11) and (12) into (9), we can derive a 
partitioned recursive least square algorithm as (13).

如) = 5：/je에 J 

1=1

where e(i) = 그 d(i)- " (顷⑴ . (7)

And then, the time update value of w(t) becomes

叫⑴=.⑴一 rz,（/）w.（o）

(8)

where Ri7(t) = 2R. (Z-1) + u((z)u^(/) and 
AP.(t + (t).

P,(0 =

=R； (t - 1)P,。T) - K” (z)uf OR； (t - 1)P. (t -1)

+ R-I(z)u.(z)/W

~ £ R„(M - 1)R〃0 - l)w (£ -1)
戶1妇

M „ .
+ 广知 k“ Wu, OR； (t - 1)R, (t - Dw丿(t -1)

M
-£ R；¥)u,a)u：(7)W,(si)

j=Lj 뵈

一1 「 M -
= R；(S1) P-a-1)- Z R*-l)Wj.("l)

rj , M
-K,(r)uf(0R^(z-l) P.(/-l)- £ R..(/-l)w (z-1)

- 為

j=，j 归
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+R“ Q)uQ) d (/)- £ uy (f)wy(/-l) 
L _

= w,a-l)-K*)u?(t)w,(—l)

& M_ ij
+ K,Q) d (?)- Z uy (Z)wy(?-1)

L Tj知 -

(13)
where

、，小一心-州⑴
IV •. (J 丿一 --- T,-------------- :-------------------------

" 九 + u； (t)R； (f-l)u,.⑴

and R； (/) = -(R-' (Z-l)-K..⑴ u： (f)R： (t -1)). 
A

wi.a-l)-K7(0uf«wi.(/-l)

+K*) d (0- t u：(/)w丿.(Si) 
L T用 _

III. Computational Complexity

Assuming the weight vector fbr full system is w(t), the 
weight vector in the zth subsystem is represented by w；, 
whose size is N、of N/M. We can derive total number of 
multiplication from eqn. (13). K订(f) needs N： + N： 
multiplications. Ry/ (/) does because R7 (?) has 
common part with K..(r). Ki..(/)u^(r)wz.(?-l) does 27%.

# m
K*) d (r)- X uy (f)wy(r -1) does (M - X)Nj + Ni.

L 丿시”归 」

Therefore, the total number of multiplications required is

=M 2
、

N
+ W + 3) —— 

M
2 2
一丿V +(M+3)N zijx
M ' I，)

where N is the length of weight vector w(t) or data vector 
u(t). In contrast, conventional RLS algorithm requires 
about 2N2 + 4N [3]. To compare the required computa­
tional complexities between the proposed and conventional 
method, the following inequality equation is solved.

2 2 2—N2 +(M + 3)N < 2N + AN .
M

(15)
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Fig. 1. Ftelative complexity of PRLS to conventional RLS in optimal 

partition

From (15), we achieve the valid range of M as follows:

\<M <2N. (16)

In actual fact, the partition number M should be less than 
the data vector length of N such that the proposed algorithm 
always needs lesser multiplications than the conventional 
RLS. We can also derive the optimal partition number from 
differentiation by M of (14) in case of equal division as 
follows.

Optim이 partition number: M =』2N . (17)

Fig. 1. shows the relative complexity of the ratio between 
the proposed algorithm and the conventional RLS in 
percent in optimal partition. Fig. 1. illustrates that relative 
complexity of PRLS decreases as the order of whole 
system increases.

IV. Simulation Results

In this section, a system identification example is 
presented fbr performance comparison. We considered an 
FIR model such as

y(t) = hrx = [-0.3 -0.9 0.8 -0.7 0.6 0.1] M

_x(—5)_
(18)
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in a small system case

Table 1. Performance comparison between conventional RLS and PRLS

SNR 
「d비

RLS PRLS 
(2 subsystems)

PRLS 
(3 subsystems)

RMSE0 RMSE RMSE
5 3.0% 3.0% 3.1 %
10 1.7% 1.7% 1.6%
15 0.95% 0.96% 0.95%
20 0.51 % 0.53% 0.50%
25 0.29% 0.29% 0.27%
r.c.2) 100% 75% 69%

1) RMSE: normalized root mean square error

RMSE = J”yt

V 必 IM2
hm : the estimated vector in the vnth trial
2) R.C.: relative complexity (relative number of multiplication)

Table 2. Performance comparison between conventional RLS and PRLS 

in a small system case

SNR 
[dB]

RLS PRLS 
(5 

subsystems)

PRLS 
(10 

subsystems)

PRLS 
(20 

subsystems)

PRLS 
(50 

subsystems)
RMSE0 RMSE RMSE RMSE RMSE

10 7.28% 7.87% 7.96% 8.02% 7.96%
15 4.08% 4.36% 4.42% 4.51% 4.59%
20 2.31% 2.49% 2.53% 2.55% 2.54%
25 1.30% 1.40% 1.40% 1.43% 1.45%

r.c.2) 100% 23% 16% 16% 28%
1) RMSE: normalized root mean square error

rMSE = J丄HF

ii»ir

hm : the estimated vector in the mth trial
2) R.C.: relative complexity (relative numberof multiplication)

where x(t) is white noise. In this simulation, we applied the 
proposed algorithm to the model, h, partitioned by 2 and 3 
subsystems, and compared the results from conventional 
RLS with the whole length system of h, Table 1 gives the 
summary of the results from 100 independent trials.

In Table 1, the proposed algorithm shows almost the 
level of estimation accuracy with li비e degradation based 
on RMSE. The second model has 100 taps, with nonzero 
taps of values [0.1, 1, -0.5, 0.1] located in positions [1, 30, 
35, 85]. In this model, we divide it into 5, 10, 20 and 50 
subsystems respectively. Table 2 summarizes the results 
from 100 independent trials. It 아lows the same 
performance as a former case. Fig.2. compares the MSE

(mean square error). It contains result of RLS and results of 
the proposed algorithm with partitioning in 5, 10, 20 and 50. 
This figure shows that the proposed algorithm converges 
almost at the same speed although the proposed one 
converges slower at the early phase. In this simulation, we 
add white Gaussian noise to clean output, y, for the various 
SNRs.

V. Conclusion

In this Paper, we proposed an efficient RLS algori한im for 
a large order model. The algorithm decomposes the 
parameter vector of the original system into several 
subvectors and applies each one to independent RLS. The 
whole size parameter vector can be constructed merely by 
concatenation of the output subvectors. The positive aspect 
of this method is that it is less complex compared to the 
conventional RLS. The comparison also shows that the 
same estimation performance is maintained.
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Fig. 2, MSE comparison between the proposed algorithm and 

the conventional RLS
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one with 20 partitions, circle: proposed one with 50 
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