• Title/Summary/Keyword: RFID tag chip impedance

Search Result 32, Processing Time 0.028 seconds

Optimization of UHF RFID Tag Antennas Using a Genetic Algorithm

  • Kim, Goo-Jo;Chung, You-Chung
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.263-266
    • /
    • 2005
  • An UHF ($860{\sim}960MHz$) RFID tag antenna is optimized and designed using a genetic algorithm (GA). The tag antenna impedance should be matched to the conjugate of the impedance of the tag IC Chip. The chip impedance has real and capacitive imaginary parts due to the parasitic capacitance of the RFID chip. A GA linked with a commercially available antenna simulation program optimizes the UHF $860{\sim}960\;MHz$ tag antenna to match a commercially available RFID chip. This method shows that any RFID antenna can be designed for any commercial RFID chip with any impedance.

  • PDF

Modelling Method for Removing Measurement Uncertainty in Chip Impedance Characterization of UHF RFID Tag IC (UHF RFID 태그 칩의 임피던스 산출 불확실성 제거를 위한 모델링 방법)

  • Yang, Jeenmo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1228-1235
    • /
    • 2014
  • Input impedance of UHF RFID tag chip is needed to design a tag. In determining the chip impedance, direct measurement method is adopted commonly. In this paper, problems generated from fixtures that interface between tag chip and coaxial-oriented measurement instrument are investigated and the result of the problems is shown, when the direct measurement method is applied. As an alternative to the method, a modeling method is proposed and its validity and accuracy are shown.

Impedance and Read Power Sensitivity Evaluation of Flip-Chip Bonded UHF RFID Tag Chip (플립-칩 본딩된 UHF RFID 태그 칩의 임피던스 및 읽기 전력감도 산출방법)

  • Yang, Jeenmo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.203-211
    • /
    • 2013
  • UHF RFID tag designers usually ndde the chip impedance and read power sensitivity value obtained when a tag chip is mounted on a chip pad. The chip impedance, however, is not able to be supplied by chip manufacturer, since the chip impedance is varied according to tag designs and fabrication processes. Instead, the chip makers mostly supply the chip impedances measured on the bare dies. This study proposes a chip impedance and read power sensitivity evaluation method which requires a few simple auxiliary and some RF measuring equipment. As it is impractical to measure the chip impedance directly at mounted chip terminals, some form test fixture is employed and the effect of the fixture is modeled and de-embeded to determine the chip impedance and the read power sensitivity. Validity and accuracy of the proposed de-embed method are examined by using commercial RFID tag chips as well as a capacitor and a resistor the value of which are known.

Impedance Tuning and Matching Characteristics of UHF RFID Tag for Increased Reading Range (인식거리 향상을 위한 UHF 대역 RFID 태그 임피던스 정합 설계)

  • Lee, Jong-Wook;Kwon, Hong-Il;Lee, Bom-Son
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.279-284
    • /
    • 2005
  • We investigated the impedance matching characteristics of UHF-band RFID tag antenna and tag chip for increased reading range. A voltage multiplier designed using 0.4 $\mu$m zero-$V_T$ MOSFET showed that DC output voltage of about 2 V can be obtained using standard CMOS process. The input impedance of the voltage multiplier was examined to achieve impedance matching to the RFID tag antenna using analytical and numerical approaches. The input impedance of the voltage multiplier could be varied in a wide range by selecting the size of MOSFET and the number of multiplying stages, and thus can be impedance matched to a tag antenna in presence of other tag circuit blocks. A meander line inductively-coupled RFID tag antenna operating at UHF band also shows the feasibility of impedance matching to tile RFID tag chip.

  • PDF

Impedance Evaluation Method of UHF RFID Tag Chip for Maximum Read Range (UHF RFID 태그의 최대 인식 거리를 얻기 위한 태그 칩의 임피던스 산출 방법)

  • Sim, Yong-Seog;Yang, Jeen-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1148-1157
    • /
    • 2013
  • In a passive UHF RFID system, the impedance matching between tag antenna and chip as well as the protocol parameter settings in a reader plays important role in determination of the maximum read-range. Almost no paper, however, has dealt with the above issues in relation with the maximum read range. In this paper, two known methods (of using the value from data sheets and proprietary RFID tester) and our proposing method in chip impedance evaluation are compared in terms of maximum read range. The read range of tags whose antenna impedance is conjugate matched with the chip impedance obtained from the proposed method is improved maximum 73 % more than that of tags from the other methods.

RFID Tag Antenna Mountable on High-Conductivity and High Permittivity an Materials at UHF Band (고 전도율과 고 유전율 물질에 부착 가능한 RFID 태그 안테나)

  • Kwon Hong-Il;Lee Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.797-802
    • /
    • 2005
  • In this paper, we design a UHF band RFID tag antenna which is conjugate matched to an impedance of a chip and also mountable on conductive materials. The proposed tag antenna is very compact($50{\times}30{\times}4mm$) with a modified PIFA shape. The proposed tag antenna has an advantage of easy matching to various chip input impedances. The performance of the antenna is evaluated by monitoring RCS in the reader direction. The RCS of the designed tag is $-10.2\;dBm^2$ when the chip is shorted and is $-21\;dBm^2$ when the chip impedance is a complex conjugate of the antenna impedance.

Design Consideration of the Voltage Multiplier of UHF RFID Tag for Increased Reading Range (인식거리 향상을 위한 UHF 대역 RFID 태그용 전압체배기 설계)

  • Lee, Jong-Wook;Lee, Bom-Son
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.587-590
    • /
    • 2005
  • We investigated the input impedance characteristics of UHF-band RFID tag chip for increased reading range. A voltage multiplier designed using 0.4 ${\mu}m$ $zero-V_T$ MOSFET showed that DC output voltage of 2 V can be obtained using standard CMOS process. The input impedance of the voltage multiplier was examined to achieve impedance level for maximum reading distance using analytical and numerical approaches. The input impedance of the voltage multiplier could be varied in a wide range by selecting the size of MOSFET and the number of multiplying stages of the voltage multiplier, and thus, the impedance level required for the tag antenna can be obtained in presence of other tag circuit blocks.

  • PDF

Miniaturization Design of Tag Antenna for RFID System in 910 MHz band (910 MHz 대역 RFID용 태그 안테나의 소형화 설계)

  • Park, Gun-Do;Min, Kyeong-Sik
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.363-368
    • /
    • 2008
  • This paper presents a miniaturization design technique of radio frequency identification (RFID) tag antenna operated in 910 MHz band. Miniaturization structure design for a tag antenna is performed by structure application of the folded dipole and meander line. In order to realize the maximum power transmission, imaginary part of a chip impedance and a tag antenna impedance is matched by complex conjugate number. The optimized tag antenna size is $50\;nm\;{\times}\;40\;nm\;{\times}\;1.6\;nm$ and its size is reduced about 62 % comparison with antenna size of reference [4]. The measured results of fabricated tag antenna are confirmed the reasonable agreement with prediction. The read range of the tag antenna with chip observed about 5 m.

RFID Tag Antenna Coupled by Shorted Microstrip Line for Metallic Surfaces

  • Choi, Won-Kyu;Kim, Jeong-Seok;Bae, Ji-Hoon;Choi, Gil-Young;Pyo, Cheol-Sig;Chae, Jong-Suk
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.597-599
    • /
    • 2008
  • This letter presents the design of a small and low-profile RFID tag antenna in the UHF band that can be mounted on metallic objects. The designed tag antenna, which uses a ceramic material as a substrate, consists of a radiating patch and a microstrip line with two shorting pins for a proximity-coupled feeding structure. Using this structure, impedance matching can be simply obtained between the antenna and tag chip without a matching network. The fractional impedance bandwidth for $S_{11}$ <3 dB and radiation efficiency are about 1.4% and 56% at 911 MHz, respectively. The read range is approximately from 5 m to 6 m when the tag antenna is mounted on a metallic surface.

  • PDF

Design of UHF RFID Tag Considering Chip Characteristic (칩 특성을 고려한 UHF RFID 태그 설계)

  • Lee, Hong-Joo;Hwang, Gun-Yong;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.194-200
    • /
    • 2011
  • Recently, RFID(Radio Frequency IDentification) market spread in industry region is entering a phase of stagnation due to cost issue. RFID tag inlay cost has become relatively more expensive due to the recent decrease in chip price. Therefore, a simple and rapid design technique for RFID tag has yet to be implemented to achieve low cost. This paper presents a design technique considering chip impedance for antenna design for improved accuracy and computation time. As a result, it is confirmed that analysis error for resonance ranges within 20MHz and readable range error falls within 1.5m.