• Title/Summary/Keyword: RF power inductively coupled plasma

Search Result 204, Processing Time 0.028 seconds

Characterization and deposition of ZnO thin films by Reactive Magnetron Sputtering using Inductively-Coupled Plasma (ICP) (유도결합형 플라즈마를 사용한 반응성 마그네트론 스퍼터링에 의한 ZnO 박막 증착 및 특성분석)

  • Kim, Dong-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.83-89
    • /
    • 2011
  • In this study, we investigated the effects of shutter control by Reactive Magnetron Sputtering using Inductively-Coupled Plasma(ICP) for obtaining ZnO thin films with high purity. The surface morphologies and structure of deposited ZnO thin films were characterized using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray Diffractometer (XRD). Also, optical and chemical properties of ZnO thin films were analyzed by Spectroscopic Ellipsometer (SE) and X-ray Photoelectron spectroscopy (XPS). As a result, it observed that ZnO thin films grown at reactive sputtering using shutter control and ICP were higher density, lower surface roughness, better crystallinity than other conventional sputtering deposition methods. For obtaining better quality deposition ZnO thin films, we will investigate the effects of substrate temperature and RF power on shutter control by a reactive magnetron sputtering using inductively-coupled plasma.

Electron Density Measurement of Inductively Coupled Plasma Using Langmuir Probe (Langmuir Probe를 이용한 유도결합형 플라즈마의 전자 밀도 측정)

  • Lee, Young-Hwan;Jo, Ju-Ung;Kim, Kwang-Soo;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1111-1114
    • /
    • 2003
  • In this paper, electrical characteristics of inductively coupled plasma in an electrodeless fluorescent lamp were investigated using a Langmuir probe with a variation of argon gas pressure. The RF output was applied in the range of $5{\sim}50W$ at 13.56MHz. The internal plasma voltage of the chamber and the probe current were measured while varying the supply voltage to the Langmuir probe in the range of $-100V{\sim}+100V$. When the pressure of argon gas was increased, electric current was decreased. There was a significant electric current increase from l0W to 30W. Also, when the RF power was increased, electron density was increase. This implies that this method can be used to find an optimal RF power for efficient light illumination in an electrodeless fluorescent lamp.

  • PDF

Fabrication of Low Temperature Poly-Silicon by Inductively Coupled Plasma Assisted Magnetron Sputtering (유도결합 플라즈마-마그네트론 스퍼터링 방법을 이용한 저온 폴리실리콘 제조)

  • 유근철;박보환;주정훈;이정중
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.164-168
    • /
    • 2004
  • Polycrystalline silicon thin films were deposited by inductively coupled plasma (ICP) assisted magnetron sputtering using a gas mixture of Ar and $H_2$ on a glass substrate at $250^{\circ}C$. At constant Ar mass flow rate of 10 sccm, the working pressure was changed between 10mTorr and 70mTorr with changing $H_2$ flow rate. The effects of RF power applied to ICP coil and $Ar/H_2$ gas mixing ratio on the properties of the deposited Si films were investigated. The crystallinity was evaluated by both X-ray diffraction and Raman spectroscopy. From the results of Raman spectroscopy, the crystallinity was improved as hydrogen mixing ratio was increased up to$ Ar/H_2$=10/16 sccm; the maximum crystalline fraction was 74% at this condition. When RF power applied to ICP coil was increased, the crystallinity was also increased around 78%. In order to investigate the surface roughness of the deposited films, Atomic Force Microscopy was used.

The Effects of Etch Process Parameters on the Ohmic Contact Formation in the Plasma Etching of GaN using Planar Inductively Coupled $CH_4/H_2/Ar$ Plasma (평판 유도 결합형 $CH_4/H_2/Ar$ 플라즈마를 이용한 GaN 건식 식각에서 공정변수가 저항성 접촉 형성에 미치는 영향)

  • Kim, Mun-Yeong;Tae, Heung-Sik;Lee, Ho-Jun;Lee, Yong-Hyeon;Lee, Jeong-Hui;Baek, Yeong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.438-444
    • /
    • 2000
  • We report the effects of etch process parameters on the ohmic contact formation in the plasma etching of GaN. Planar inductively coupled plasma system with $CH_4/H_2/Ar$gas chemistry has been used as etch reactor. The contact resistance and the specific contact resistance have been investigated using transfer length method as a function of RF bias power and %Ar gas concentration in total flow rate. AES(Auger electron spectroscopy) analysis revealed that the etched GaN has nonstoichiometric Ga rich surface and was contaminated by carbon and oxygen. Especially large amount of carbon was detected at the sample etched for high bias power (or voltage) condition, where severe degradation of contact resistance was occurred. We achieved the low ohmic contact of $2.4{\times}10^{-3} {\Omega}cm^2$ specific contact resistance at the input power 400 W, RF bias power 150 W, and working pressure 10mTorr with 10 sccm $CH_4$, 15 sccm H2, 5 sccm Ar gas composition.

  • PDF

Superconducting Flux flow Transistor using Plasma Etching (플라즈마 식각을 이용한 초전도 자속 흐름 트랜지스터)

  • 강형곤;고석철;최명호;한윤봉;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.424-428
    • /
    • 2003
  • The channel of a superconducting flux flow transistor has been fabricated with plasma etching method using a inductively coupled plasma etching. The ICP conditions then were ICP Power of 450 W, rf chuck power of 150 W, the pressure in chamber of 5 mTorr, and Ar : Cl$_2$=1:1. Especially, over the 5 mTorr, the superconducting thin films were not etched. The channel etched by plasma gas showed the critical temperature over 85 K. The critical current of the SFFT was altered by varying the external applied current. As the external applied current increased from 0 to 12 mA, the critical current decreased from 28 to 22 mA. Then the obtained trans-resistance value was smaller than 0.1 $\Omega$ at a bias current of 40 mA.

Spatial Distribution of Electron Number Density in an Inductively Coupled Plasma (유도결합 플라스마 공간내의 전자밀도 분포)

  • Beom Suk Choi
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.327-332
    • /
    • 1986
  • Spatial (radial and height) distribution of electron number density is measured for an inductively coupled plasma under five operating conditions: (1) no carrier gas, (2) carrier gas without aerosel, (3) carrier gas with aerosol, (4) carrier gas with desolvated aerosol, and (5) carrier gas with aerosol and excess lithium. A complete RF power mapping of electron density is obtained. The plasma electrons for a typical analytical torch are observed to be hollow at the radial center in the region close to the induction coil, but diffuse rapidly toward the center in the higher region of the plasma. The presence of excess Li makes no significant change in the electron density profiles. The increases in the RF power levels increase the values of electron density uniformly across the radial coordinate.

  • PDF

A Measurements on the Characteristics of Electron Energy Distribution Function of Radio-Frequency Inductively Couples Plasma (고주파 유도결합 플라즈마의 전자에너지 분포함수 계측에 관한 연구)

  • 하장호;전용우;최상태;박원주;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.82-86
    • /
    • 1999
  • Electron Energy Distribution Function(EEDF) were treasured In Radio-Frequency Inductively Coupled Plasma(RFlCP) using a probe rrethocl Measurerrents were conducted in argon discharge for pressure from 10[mTorr] to 4O[mTorr] and input rf power from 100[W] to 600[W] and flow rate from 3[sccm] to 12[sccm]. Spatial distribution of electron energy distribution function were measured for discharge with same aspoct ratio (R/L=2). Electron energy distribution function strongly depended on both pressure and power. Electron energy distribution function increased with increasing flow rate. Radial distribution of the electron energy distribution function were peaked in the plasma center. Normal distribution of the electron energy distribution function were peaked in the center between quartz plate and substrate. From the results, we can find out the generation mechanism of Radio Frequency Inductively Coupled Plasma. And these results contribute the application of a simple Inductively Coupled Plasma(ICP).a(ICP).

  • PDF

Preparation of Large Area Plasma Source by Helical Resonator Arrays (Helical Resonator 배열을 통한 대면적 고밀도 Plasma Source)

  • 손민영;김진우;박세근;오범환
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.282-285
    • /
    • 2000
  • Four helical resonators are distributed in a 2 ${\times}$ 2 array by modifying upper part of the conventional reactive ion etching(RIE) type LCD etcher in order to prepare a large area plasma source. Since the resonance condition of the RF signal to the helical antenna, one RF power supply is used for delivering the power efficiently to all four helical resonators without an impedance matching network Previous work of 2 ${\times}$ 2array inductively coupled plasma(ICP)requires one matching circuit to each ICP antenna for more efficient power deliverly Distributions of ion density and electron temperature are measured in terms of chamber pressure, gas flow rate and RF power . By adjusting the power distribution among the four helical resonator units, argon plasma density of higher than 10$\^$17/㎥ with the uniformity of better than 7% can be obtained in the 620 ${\times}$ 620$\textrm{mm}^2$ chamber.

  • PDF

Measurement of Inductively Coupled Plasma Using Langmuir Probe (Langmuir Probe를 이용한 유도결합형 플라즈마의 측정)

  • Lee, Y.H.;Jo, J.U.;Kim, K.S.;Choi, Y.S.;Park, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1719-1721
    • /
    • 2003
  • In this paper, electrical characteristics of inductively coupled plasma in an electrodeless fluorescent lamp were investigated using a Langmuir probe with a variation of Ar gas pressure. The RF output was applied in the range of 5-50W at 13.56MHz. The internal plasma voltage of the chamber and the probe current were measured while varying the supply voltage to the Langmuir probe in the range of -100V ${\sim}$ +100V. When the pressure of Ar gas was increased, electric current was decreased. There was a significant electric current increase when the applied RF power was increased from 10 W to 30 W. This implies that this method can be used to find an optimal RF power for efficient light illumination in an electrodeless fluorescent lamp.

  • PDF

A Study on the Fabrication and Properties of RF Sputter Etch Reactor using Planar Inductively Coupled Plams (평판형 유도결합플라즈마를 이용한 RF 스퍼터 식각반응로 제작 및 특성에 관한 연구)

  • 이원석;이진호;염근영
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.2
    • /
    • pp.210-216
    • /
    • 1995
  • 최근에 연구되고 있는 저온, 저압 플라즈마를 이용한 식각기술 중 차세대 반도체 metallization 공정에 응용될 수 있는 가장 적합한 기술이라 사료되는 유도 결합형 플라즈마(Inductively Coupled Plasma : ICP)를 이용한 RF 스퍼터 식각 반응로를 제작하고 이에 대한 특성을 조사하였다. 유도용 주파수로서 13.56 MHz를 사용하였으며 유도결합을 일으키기 위해 3.5회의 나선형 평판형 코일을 사용함으로써 비교적 대면적에 균일한 고밀도 플라즈마를 얻을 수 있었다. 또한 기판에 독립적인 13.56MHz RF power를 가해 DC 바이어스를 인가함으로써 기판으로 입사하는 하전입자들의 에너지를 조절하여 기판에의 손상을 최소화하며 SiO2의 스퍼터 식각 속도를 극대화할 수 있었다. 따라서 이러한 특성을 갖는 유도 결합형 플라즈마 식각장치를 차세대 반도체의 RF스퍼터 식각 공정에 응용할 수 있으리라 사료된다.

  • PDF