• Title/Summary/Keyword: RF output power

Search Result 373, Processing Time 0.027 seconds

A Study on the Stable 20 Watt High Power Amplifier for INMARSAT-C (INMARSAT-C형 위성통신단말기를 위한 안정한 20 Watt 고출력 증폭기에 관한 연구)

  • 전중성;김동일;배정철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.281-290
    • /
    • 1999
  • This paper presents the development of a high power amplifier for a transmitter of INMARSAT-C operating at L-band(1626.5∼1646.5 MHz). To simplify the fabrication process, the whole system is designed of two parts composed of a driving amplifier and a high power amplifier The HP's AT-41486 is used for driving part and the SGS-THOMSON microelectronics' STM1645 is used the high power amplifier. The SSPA(Solid State Power Amplifier) was fabricated by the both circuits of RF and temperature compensation in aluminum housing. The realized SSPA has more than 36 dB for small signal within 20MHz bandwidth, and the voltage standing wave ratios(VSWR) of input and output Port are less than 1.5:1, respectively. The output Power of 42.2 dBm is achieved at the 1636.5 MHz. These results reveal a high power amplifier of 20 Watt which is the design target.

  • PDF

The variable power divider circuit to use the ring-hybrid coupler (링-하이브리드 커플러를 이용한 가변 전력 분배기 회로)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.253-259
    • /
    • 2016
  • This paper introduces a new variable power divider circuit with an arbitrary power division ratio ranging from $1:{\infty}$ to ${\infty}:1$. The proposed power divider circuit consists of one branch-line coupler to be a good input matching characteristic, two variable phase shifters with 90-degree phase variation to be connected two output paths of the branch-line coupler, and one ring-hybrid coupler to combine output signals of two variable phase shifter. The power division ratio between the two output ports of the proposed power divider can be easily controlled by the phase variation of the two phase shifter. The proposed power divider circuit fabricates on laminated RF-35 (h = 20 mil, er=3.5; Taconic) with a center frequency of 2 GHz. The power division ratio of the fabricated prototype varies from about 1:1000 to 5000000:1, with an input reflection characteristic(S11) of below -20 dB, an insertion loss of about -1.0 dB, and an isolation characteristic of below -17 dB between two output ports in the range 1.9-2.1 GHz.

Studies on fabrication of 0.5$mu$m GaAs power MESFET's using a conventional UV lithography and angle evaporations (Conventional UV 리소그라피와 경사각증착에 의한 0.5$mu$m 전력용 CaAs MESFET 제작에 관한 연구)

  • 이일형;김상명;윤진섭;이진구
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.130-135
    • /
    • 1995
  • GaAs power MESFET's with 0.5 .mu.m gate length using a conventional UV lithography and angle evaporations are fabricated and then DC and RF characteristics are measured and carefully analyzed. The 0.5$\mu$m GaAs power MESFET's are fabricated on epi-wafers which have an undoped GaAs layer inbetween n+ and n GaAs layers grown by MBE, and by the processes such as an image reversal(IR), air-bridge, and our developed 0.5 .mu.m gate fabrication techniques. The total gate widths of the fabricated 0.5$\mu$m GaAs power MESFETs are 0.6-3.0 mm, the current saturation of them 80-400 mA, the maximum linear and RF output power of them 60-265 mW. The current gain cut-off frequencies for the 0.5$\mu$m GaAs power MESFETs varies 13-16 GHz. For the test frequency of 10 GHz the maximum unilateral transducer power gains and the power added efficiencies of the GaAs power devices are 7.0-2.5 dB and 35.68-30.76 %, respectively.

  • PDF

Implementation of a CMOS RF Transceiver for 900MHz ZigBee Applications (ZigBee 응용을 위한 900MHz CMOS RF 송.수신기 구현)

  • Kwon, J.K.;Park, K.Y.;Choi, Woo-Young;Oh, W.S.
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.175-184
    • /
    • 2006
  • In this paper, we describe a 900MHz CMOS RF transceiver using an ISM band for ZigBee applications. The architecture of the designed rx front-end, which consists of a low noise amplifier, a down-mixer, a programmable gain amplifier and a band pass filter. And the tx front-end, which consists of a band pass filter, a programmable gain amplifier, an up-mixer and a drive amplifier. A low-if topology is adapted for transceiver architecture, and the total current consumption is reduced by using a low power topology. Entire transceiver is verified by means of post-layout simulation and is implemented in 0.18um RF CMOS technology. The fabricated chip demonstrate the measured results of -92dBm minimum rx input level and 0dBm maximum tx output level. Entire power consumption is 32mW(@1.8VDD). Die area is $2.3mm{\times}2.5mm$ including ESD protection diode pads.

Analysis of Nonlinearity of RF Amplifier and Back-Off Operations on the Multichannel Wireless Transmission Systems. (다 채널 무선 전송 시스템의 RF증폭기의 비선형 및 백-오프 동작 분석)

  • 신동환;정인기;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.18-27
    • /
    • 2004
  • In this paper, we presents an analytical simulation procedure for evaluation in baseband digital modulated signals distortions in the present of RF power amplifier(SSPA) nonlinear behavior and backoff operations of OFDM wireless transmission system. we obtained the optimum nonlinear transfer function of designed SSPA with the SiGe HBT bias currents of OFDM multi-channel wireless transmission system and compared this transfer function to SSPA nonlinear modeling functions mathematically, we finds optimum bias conditions of designed SSPA. With the derived nonlinear modeling function of SSPA, We analysed the PSD characteristics of in-band and out-band output powers of SSPA EVM measurement results of distorted constellation signals with the input power levels of SSPA. The results of paper can be applied to find the SSPA linearly with optimum bias currents and determine the SSPA input backoff bias for AGC control circuits of SSPA.

A D-Band Integrated Signal Source Based on SiGe 0.18μm BiCMOS Technology

  • Jung, Seungyoon;Yun, Jongwon;Rieh, Jae-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.4
    • /
    • pp.232-238
    • /
    • 2015
  • This work describes the development of a D-band (110-170 GHz) signal source based on a SiGe BiCMOS technology. This D-band signal source consists of a V-band (50-75 GHz) oscillator, a V-band amplifier, and a D-band frequency doubler. The V-band signal from the oscillator is amplified for power boost, and then the frequency is doubled for D-band signal generation. The V-band oscillator showed an output power of 2.7 dBm at 67.3 GHz. Including a buffer stage, it had a DC power consumption of 145 mW. The peak gain of the V-band amplifier was 10.9 dB, which was achieved at 64.0 GHz and consumed 110 mW of DC power. The active frequency doubler consumed 60 mW for D-band signal generation. The integrated D-band source exhibited a measured output oscillation frequency of 133.2 GHz with an output power of 3.1 dBm and a phase noise of -107.2 dBc/Hz at 10 MHz offset. The chip size is $900{\times}1,890{\mu}m^2$, including RF and DC pads.

Study On the Pulse Power Supply using Inverter Power Supply for XFEL (XFEL용 인버터 고전압 전원공급장치를 이용한 펄스전원공급장치 연구)

  • Park, S.S.;Kim, S.H.;Kim, S.C.;Han, Y.J.;Hwang, J.Y.;Kim, H.G.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.198-200
    • /
    • 2005
  • The 2.5 GeV linac of the Pohang Light Source(PLS) is planed to be converted to a XFEL. The PAL XFEL requires a new 1.2-GeV linac that will be combined to the existing linac to increase a beam energy upto 3.7 GeV. The RF stability of 0.02 % is required for both RF phase and amplitude to get the XFEL output. This stability is mainly determined by a low level RF drive system and klystron-modulators. The stability level of the modulator has to be improved 10 times better to meet the pulse stability of 0.02 %. The regulation methods such as traditional de-Qing and precision inverter charging technology are reviewed to find out suitable upgrade scheme of the modulators.

  • PDF

Design of High Efficiency Switching-Mode Doherty Power Amplifier Using GaN HEMT (GaN HEMT를 이용한 고효율 스위칭 모드 도허티 전력증폭기 설계)

  • Choi, Gil-Wong;Kim, Hyoung-Jong;Choi, Jin-Joo;Kim, Seon-Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.72-79
    • /
    • 2010
  • In this paper, we describe the design and implementation of a high efficiency Doherty power amplifier using gallium nitride (GaN) high-electron mobility transistor (HEMT). The carrier and peaking amplifiers of the proposed Doherty power amplifier consist of the switching-mode Class-E power amplifiers. The test conditions are a duty of 10% and a pulse width of $100\;{\mu}s$ and pulse repetition frequency (PRF) of 1 kHz for a S-band radar application. A RF performance peak PAE of 64% with drain efficiency of 80.6%, at 6 dB output back-off point from saturated output power of 45.5 dBm, was obtained at 2.85 GHz.

Design of Dual-band Power Amplifier using CRLH of Metamaterials (메타구조의 CRLH를 이용한 이중대역 전력증폭기 설계)

  • Ko, Seung-Ki;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.78-83
    • /
    • 2010
  • In this paper, a novel dual-band power amplifier using metamaterials has been realized with one RF GaN HEMT diffusion metal-oxide-semiconductor field effect transistor. The CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. We have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency. Two operating frequencies are chosen at 900 MHz and 2140 MHz in this work. The measured results show that the output power of 39.83 dBm and 35.17 dBm was obtained at 900 MHz and 2140 MHz, respectively. At this point, we have obtained the power-added efficiency (PAE) and IMD of 60.2 %, -23.17dBc and 67.3 %, -25.67dBc at two operation frequencies, respectively.

Beamspace MIMO System Using ESPAR Antenna with single RF chain (단일 RF chain을 갖는 전자 빔 조향 기생 배열 안테나를 사용한 빔 공간 MIMO 시스템)

  • An, Changyoung;Lee, Seung Hwan;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.10
    • /
    • pp.885-892
    • /
    • 2013
  • The main advantage of ESPAR antenna is that ESPAR antenna requires only a single RF chain for reduction of transceiver's hardware complexity, as compared to conventional MIMO system. In conventional MIMO system, each data symbol is mapped to each antenna. But, each data symbol is mapped to each orthogonal basis pattern in ESPAR antenna system. In this paper, we design beamspace MIMO system using ESPAR antenna with single RF chain for MIMO system of low-complexity and low power consumption. And then, we analyze performance of beamspace MIMO according to each PSK modulation. Performance of beamspace MIMO system is similar to performance of conventional MIMO system. As a result of analyzing the performance of beamspace MIMO system using higher-order PSK modulation. we can confirm that performance characteristic of beamspace MIMO system with low complexity and low power consumption is similar to digital communication of signal domain.