• Title/Summary/Keyword: RF noise immunity

Search Result 12, Processing Time 0.026 seconds

Design of DC-DC Boost Converter with RF Noise Immunity for OLED Displays

  • Kim, Tae-Un;Kim, Hak-Yun;Baek, Donkyu;Choi, Ho-Yong
    • Journal of Semiconductor Engineering
    • /
    • v.3 no.1
    • /
    • pp.154-160
    • /
    • 2022
  • In this paper, we design a DC-DC boost converter with RF noise immunity to supply a stable positive output voltage for OLED displays. For RF noise immunity, an input voltage variation reduction circuit (IVVRC) is adopted to ensure display quality by reducing the undershoot and overshoot of output voltage. The boost converter for a positive voltage Vpos operates in the SPWM-PWM dual mode and has a dead-time controller using a dead-time detector, resulting in increased power efficiency. A chip was fabricated using a 0.18 um BCDMOS process. Measurement results show that power efficiency is 30% ~ 76% for load current range from 1 mA to 100 mA. The boost converter with the IVVRC has an overshoot of 6 mV and undershoot of 4 mV compared to a boost converter without that circuit with 18 mV and 20 mV, respectively.

2-Channel DC-DC Converter for OLED Display with RF Noise Immunity (RF 노이즈 내성을 가진 OLED 디스플레이용 2-채널 DC-DC 변환기)

  • Kim, Tae-Un;Kim, Hak-Yun;Choi, Ho-Yong
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.853-858
    • /
    • 2020
  • This paper proposes a 2-ch DC-DC converter for OLED display with immunity against RF noise inserted from communication device. For RF signal immunity, an input voltage variation reduction circuit that attenuates as much as the input voltage variation is embedded. The boost converter for positive voltage VPOS operates in SPWM-PWM dual mode and has a dead time controller to increase power efficiency. The inverting charge pump for negative voltage VNEG is a 2-phase scheme and operates in PFM using VCO to reduce output ripple voltage. Simulation results using 0.18 ㎛ BCDMOS process show that the overshoot and undershoot of the output voltage decrease from 10 mV to 2 mV and 5 mV, respectively. The 2-ch DC-DC converter has power efficiency of 39%~93%, and the power efficiency of the boost converter is up to 3% higher than the conventional method without dead time controller.

Evaluation of IC Electromagnetic Conducted Immunity Test Methods Based on the Frequency Dependency of Noise Injection Path (Noise Injection Path의 주파수 특성을 고려한 IC의 전자파 전도내성 시험 방법에 관한 연구)

  • Kwak, SangKeun;Kim, SoYoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.436-447
    • /
    • 2013
  • In this paper, Integrated circuit(IC) electromagnetic(EM) conducted immunity measurement and simulation using bulk current injection(BCI) and direct power injection(DPI) methods were conducted for 1.8 V I/O buffers. Using the equivalent circuit models developed for IC electromagnetic conducted immunity tests, we investigated the reliability of the frequency region where IC electromagnetic conducted immunity test is performed. The insertion loss for the noise injection path obtained from the simulation indicates that using only one conducted immunity test method cannot provide reliable conducted immunity test for broadband noise. Based on the forward power results, we analyzed the actual amount of EM noise injected to IC. We propose a more reliable immunity test methods for broad band noise.

BCI Probe Emulator Using a Microstrip Coupler (마이크로스트립 커플러 구조를 이용한 BCI 프로브 Emulator)

  • Jung, Wonjoo;Kim, SoYoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1164-1171
    • /
    • 2014
  • Bulk Current Injection(BCI) test is a method of injecting current into Integrated Circuit(IC) using a current injection probe to qualify the standards of Electromagnetic Compatibility(EMC). This paper, we propose a microstrip coupler structure that can replace the BCI current injection probe that is used to inject a RF noise in standard IEC 62132-part 3 documented by International Electrotechnical Commission. Conventional high cost BCI probe has mostly been used in testing automotive ICs that use high supply voltage. We propose a compact microstrip coupler which is suitable for immunity testing of low power ICs. We tested its validity to replace the BCI injection probe from 100 MHz to 1,000 MHz. We compared the power[dBm] that is needed to generate the same level of noise between current injection probe and microstrip coupler by sweeping the frequency. Results show that microstrip coupler can inject the same level of noise into ICs for immunity test with less power.

Immunity Test for Semiconductor Integrated Circuits Considering Power Transfer Efficiency of the Bulk Current Injection Method

  • Kim, NaHyun;Nah, Wansoo;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.202-211
    • /
    • 2014
  • The bulk current injection (BCI) and direct power injection (DPI) method have been established as the standards for the electromagnetic susceptibility (EMS) test. Because the BCI test uses a probe to inject magnetically coupled electromagnetic (EM) noise, there is a significant difference between the power supplied by the radio frequency (RF) generator and that transferred to the integrated circuit (IC). Thus, the immunity estimated by the forward power cannot show the susceptibility of the IC itself. This paper derives the real injected power at the failure point of the IC using the power transfer efficiency of the BCI method. We propose and mathematically derive the power transfer efficiency based on equivalent circuit models representing the BCI test setup. The BCI test is performed on I/O buffers with and without decoupling capacitors, and their immunities are evaluated based on the traditional forward power and the real injected power proposed in this work. The real injected power shows the actual noise power level that the IC can tolerate. Using the real injected power as an indicator for the EMS test, we show that the on-chip decoupling capacitor enhances the EM noise immunity.

Design of Bio-signal Acquisition System in MRI Environment (MRI 내에서의 생체신호 측정 시스템 설계)

  • Jang, Bong-Ryeol;Park, Ho-Dong;Lee, Kyoung-Joung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.871-872
    • /
    • 2006
  • In this paper, we designed bio-signal acquisition system in Magnetic Resonance Imager(MRI) Environment. In MRI Environment, Strong RF Pulse and Gradient Field Switching Noise exist and can cause distortion of ECG. By this, ECG can lose their important information. So we proposed a bio-signal acquisition system with robust immunity to RF pulse and gradient switching noise. In conclusions, the proposed system showed the prevent saturation of measured biosignal and possibility of using cardiac gating and respiration gating method.

  • PDF

A Study About the Application Feasibility of EMS IEC 61000-4-6 Test Standard on Electronic Power Meter (전자식 계기 IEC 61000-4-6 EMS 시험표준 적용 타당성 연구)

  • Kim, Seok-Gon;Park, Chang-Ho;Shin, Dong-Yeol;Song, Tae-Seung;Choi, Yong-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1261-1267
    • /
    • 2011
  • Electricity meters using in Korea are about 1.8 million units. From among these, electronic meters for high voltage, about 170 thousand units were installed to the digital type meter and ones for low voltage installed hundreds of thou-sands of meters through a model project. Recently, low voltage meter are expected to complete the installation within several years. Domestic power metering technology is being beyond a simple framework with an electronic type and is rapidly evolving to intelligent smart metering systems in conjunction with promotion of a national smart grid project. Accordingly, it is important to ensure an immunity of meter for electromagnetic field and environmental noise at the installation site. In this paper, we are going to check the validity of international standard that focusing on RF electromagnetic field immunity of meter to secure the quality and improve the reliability in field operation of meter. And we will verify the validity of test specification focused on actual installation environment and are going to offer the improvement plan of test standard.

The Study on the implementation and design of the RF transceiver for fast frequency hopping (고속주파수 도약용 RF송수신기 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung;Kim, Jong-Sung;Bae, Moon-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.591-596
    • /
    • 2016
  • This paper presents a study on the subject for the design and implementation of high-speed frequency hopping RF transceiver used for tactical communications systems. Jump the transmission / reception frequency of the L-band to hop tens per second is possible by maximizing the immunity to interference, and is applicable to communication systems having a charging rotation function. To high-speed frequency hopping it is necessary to apply the necessary fast frequency hopping scheme DDS Driven PLL added. In this paper, the RF transceiver design and simulation analysis capabilities with fast frequency tactical communication systems, were implemented after the main test for functionality and performance. Was demonstrated hop high-speed jump tens per second through a test, the main transmission output, were measured RF key performance, such as received noise figure, by using the VSG and VSA generates a ${\pi}/4$ DQPSK modulated signal constellation and by EVM measurement that there is no problem in applying the communications system described above was pre-validated.

Improving the PTS Method for the PAPR Reduction in the OFDM System (OFDM 시스템에서 PAPR 감소를 위한 PTS 기법의 성능개선)

  • Kim, Dong-Seek;Kwak, Min-Gil;Cho, Hyung-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1165-1171
    • /
    • 2010
  • The OFDM system has better characteristics in transmission rate, power efficiency, bandwidth efficiency, impulse-noise immunity, and narrow band interference immunity etc. in comparison with other conventional systems. However, high PAPR of an OFDM signals causes some serious non-linear processing of RF amplifier. And performance of the communication system gets worse. Therefore, various methods reducing PAPR of an OFDM skills such as the clipping method, block coding method, and phase rotation method etc. have been researched. In this paper, we propose a high-speed adaptive PTS method which eliminates high PAPR. And we compare the proposed method with other conventional methods. The proposed method has decreased quantity of calculation compare with an adaptive PTS method. Of course, The more its calculation amount is decreased, the more its BER characteristic is not better than an adaptive PTS method. However, keeping up satisfactory BER performance, we highly improved calculation amount of a PTS method.

The Effect of Interference Current on the I-V Characteristic Curve of Josephson Junction in Stewart-McCumber Model (Stewart-McCumber Model에서 간섭전류에 의한 조셉슨접합의 I-V 특성 변화)

  • Hong, Hyun-Kwon;Kim, Kyu-Tae;Lee, Kie-Young
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.233-236
    • /
    • 1999
  • To investigate the effect of interference current between pairs and quasi-particles, we have calculated the change I-V characteristic curve of resistively and capacitively shunted Josephson junction with external microwave by simulation of modified Stewart-McCumber model. Such rf-induced constant-voltage steps and the immunity against to noise were found to be changed in the presence of interference current.

  • PDF