• Title/Summary/Keyword: RF contact

Search Result 230, Processing Time 0.021 seconds

Ohmic contact characteristics of polycrystalline 3C-SiC for high-temperature MEMS applications (초고온 MEMS용 다결정 3C-SiC의 Ohmic Contact 특성)

  • Chung, Gwiy-Sang;Ohn, Chang-Min
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.386-390
    • /
    • 2006
  • This paper describes the ohmic contact formation of polycrystalline 3C-SiC films deposited on thermally grown Si wafers. In this work, a TiW (titanium tungsten) film as a contact material was deposited by RF magnetron sputter and annealed with the vacuum process. The specific contact resistance (${\rho}_{c}$) of the TiW contact was measured by using the C-TLM (circular transmission line method). The contact phase and interfacial reaction between TiW and 3C-SiC at high-temperature as also analyzed by XRD (X-ray diffraction) and SEM (scanning electron microscope). All of the samples didn't show cracks of the TiW film and any interfacial reaction after annealing. Especially, when the sample was annealed at $800^{\circ}$ for 30 min., the lowest contact resistivity of $2.90{\times}10{\Omega}cm^{2}$ was obtained due to the improved interfacial adhesion. Therefore, the good ohmic contact of polycrystalline 3C-SiC films using the TiW film is very suitable for high-temperature MEMS applications.

Ohmic contact formation of single crystalline 3C-SiC for high temperature MEMS applications (초고온 MEMS용 단결정 3C-SiC의 Ohmic Contact 형성)

  • Chung, Gwiy-Sang;Chung, Su-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.131-135
    • /
    • 2005
  • This paper describes the ohmic contact formation of single crystalline 3C-SiC thin films heteroepitaxially grown on Si(001) wafers. In this work, a TiW (Titanium-tungsten) film as a contact matieral was deposited by RF magnetron sputter and annealed with the vacuum and RTA (rapid thermal anneal) process respectively. Contact resistivities between the TiW film and the n-type 3C-SiC substrate were measured by the C-TLM (circular transmission line model) method. The contact phases and interface the TiW/3C-SiC were evaulated with XRD (X-ray diffraction), SEM (scanning electron microscope) and AES (Auger electron spectroscopy) depth-profiles, respectively. The TiW film annealed at $1000^{\circ}C$ for 45 sec with the RTA play am important role in formation of ohmic contact with the 3C-SiC substrate and the contact resistance is less than $4.62{\times}10^{-4}{\Omega}{\cdot}cm^{2}$. Moreover, the inter-diffusion at TiW/3C-SiC interface was not generated during before and after annealing, and kept stable state. Therefore, the ohmic contact formation technology of single crystalline 3C-SiC using the TiW film is very suitable for high temperature MEMS applications.

Electrical characteristics of MIM antifuse with contact hole numbers of $alpha-Si$. ($alpha-Si$의 contact hole 수의 증가에 따른 MIM antifuse의 전기적 특성)

  • 이상기;김용주;임원택;이동윤;권오경;이창효
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.1
    • /
    • pp.46-50
    • /
    • 1995
  • 물성을 달리한 $\alpha$-Si을 사용하여 MIM(Metal-Insulator-Metal)구조의 antifuse들을 제작하고, 물성의 변화에 따른 전기적 특성의 변화를 조사하였다. $\alpha$-Si은 PECVD (Plasma Enhanced Chemical Vapor Deposition)방법으로 증착하였으며, 물성은 RF power를 달리하여 변화시켰다. $\alpha$-Si MIM구조의 antifuse를 프로그램할 때 생기는 failure rate를 줄이기 위해 전극 사이에 삽입되는 $\alpha$-Si의 contact hole 크기와 개수를 변화시켜 보았다. MIM antifuse는 contact hole이 2개 이상일 때 failure rate가 10% 이내로 줄었으며, 프로그래밍 전류는 거의 변화가 없었다. 항복전압은 10-11V범위에 집중적으로 분포하였으며, 5V에서의 누설전류는 contact hole의 수가 증가함에 따라 커짐을 알았다.

  • PDF

Etch Characteristics of $SiO_2$ by using Pulse-Time Modulation in the Dual-Frequency Capacitive Coupled Plasma

  • Jeon, Min-Hwan;Gang, Se-Gu;Park, Jong-Yun;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.472-472
    • /
    • 2011
  • The capacitive coupled plasma (CCP) has been extensively used in the semiconductor industry because it has not only good uniformity, but also low electron temperature. But CCP source has some problems, such as difficulty in varying the ion bombardment energy separately, low plasma density, and high processing pressure, etc. In this reason, dual frequency CCP has been investigated with a separate substrate biasing to control the plasma parameters and to obtain high etch rate with high etch selectivity. Especially, in this study, we studied on the etching of $SiO_2$ by using the pulse-time modulation in the dual-frequency CCP source composed of 60 MHz/ 2 MHz rf power. By using the combination of high /low rf powers, the differences in the gas dissociation, plasma density, and etch characteristics were investigated. Also, as the size of the semiconductor device is decreased to nano-scale, the etching of contact hole which has nano-scale higher aspect ratio is required. For the nano-scale contact hole etching by using continuous plasma, several etch problems such as bowing, sidewall taper, twist, mask faceting, erosion, distortions etc. occurs. To resolve these problems, etching in low process pressure, more sidewall passivation by using fluorocarbon-based plasma with high carbon ratio, low temperature processing, charge effect breaking, power modulation are needed. Therefore, in this study, to resolve these problems, we used the pulse-time modulated dual-frequency CCP system. Pulse plasma is generated by periodical turning the RF power On and Off state. We measured the etch rate, etch selectivity and etch profile by using a step profilometer and SEM. Also the X-ray photoelectron spectroscopic analysis on the surfaces etched by different duty ratio conditions correlate with the results above.

  • PDF

Flip Chip Process for RF Packages Using Joint Structures of Cu and Sn Bumps (Cu 범프와 Sn 범프의 접속구조를 이용한 RF 패키지용 플립칩 공정)

  • Choi, J.Y.;Kim, M.Y.;Lim, S.K.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.67-73
    • /
    • 2009
  • Compared to the chip-bonding process utilizing solder bumps, flip chip process using Cu pillar bumps can accomplish fine-pitch interconnection without compromising stand-off height. Cu pillar bump technology is one of the most promising chip-mounting process for RF packages where large gap between a chip and a substrate is required in order to suppress the parasitic capacitance. In this study, Cu pillar bumps and Sn bumps were electroplated on a chip and a substrate, respectively, and were flip-chip bonded together. Contact resistance and chip shear force of the Cu pillar bump joints were measured with variation of the electroplated Sn-bump height. With increasing the Sn-bump height from 5 ${\mu}m$ to 30 ${\mu}m$, the contact resistance was improved from 31.7 $m{\Omega}$ to 13.8 $m{\Omega}$ and the chip shear force increased from 3.8 N to 6.8 N. On the contrary, the aspect ratio of the Cu pillar bump joint decreased from 1.3 to 0.9. Based on the variation behaviors of the contact resistance, the chip shear force, and the aspect ratio, the optimum height of the electroplated Sn bump could be thought as 20 ${\mu}m$.

  • PDF

Comparison of Plantar Pressure and Contact Time on Gait between the Korean Young and the Elderly Women

  • Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.19 no.5
    • /
    • pp.602-607
    • /
    • 2017
  • This study was undertaken to compare the gait characteristics between the Korean elderly and young adults, we measured the plantar pressure and contact time of gait with barefoot along a walkway at their preferred walking speed. The results indicate that older people exhibited significantly less plantar pressure than young adult in all 3 regions (FF, MF and RF) and significantly less time % on the initial contact phase (ICP), forefoot push-off phase (FFPOP) and significantly more % forefoot contact phase (FFCP) and foot flat phase (FFP). The converted plantar pressure value to percentage, it showed more pressure in forefoot (FF) in the elderly person than the young adults. It could be explained that the forward shifting in plantar pressure are associated with a more flexed posture of elderly such as actual stabilizing fearrelated adaptations. Longer total foot contact time in the elderly means that the old people show the decreased gait velocity. In other words, lower velocity was found to be associated with pre-existing fear of falling. With longer contact time and slower stepping movement, the elderly become more unstable. With these findings, it could be confirmed that there were significant changes in foot characteristics which contribute to alter the plantar pressure and contact time during gait with advancing age. Further research is required to establish possible links to risk of falling and development of footwear in the elderly adults.

MICP(Multi-pole Inductively Coupled Plasma)를 이용한 deep contact etch 특성 연구

  • 김종천;구병희;설여송
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.05a
    • /
    • pp.12-17
    • /
    • 2003
  • 본 연구에서는 MICP Etching system 을 이용한 Via contact 및 Deep contact hole etch process 특성을 연구하였다. Langmuir probe 를 이용한 MICP source 의 Plasma density & electron temperature 측정하였고 탄소와 플로우르를 포함하는 혼합 Plasma 를 형성하여 RF frequency, wall temperature, chamber gap, gas chemistry 등의 변화에 따른 식각 특성을 조사하였다. Plasma density 는 1000w 에서 $10^{11}$/$cm^3$ 이상의 high density plasma와 uniform plasma 형성을 확인하였고 $CH_{2}F_{2}$와 CO의 적절한 혼합비를 이용하여 Oxide to PR 선택비가 10 이상인 고선택비 조건을 확보하였다. 고선택비 형성에 따라 Polymer 형성이 많이 되었고 이를 개선하기 위하여 반응 챔버의 온도 조절을 통하여 Polymer 증착 방지에 효과적인 것을 확인하였다. MICP source를 이용하여 탄소와 플로우르의 혼합 가스와 식각 챔버의 온도 조절에 의한 선택비 증가를 확보하여 High Aspect Ratio Contact Hole Etch 가능성을 확보하였다.

  • PDF

Hydrophobic Properties of PTFE Thin Films Deposited on Glass Substrates Using RF-Magnetron Sputtering Method (고주파 마그네트론 스퍼터링 방법을 사용하여 유리 기판 위에 증착된 PTFE 박막의 발수 특성)

  • Kim, Hwa-Min;Kim, Dong-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.886-890
    • /
    • 2010
  • The polytetrafluoroethylene (PTFE) films are deposited on glass using conventional rf-magnetron sputtering method. Their hydrophobic properties are investigated for application as an anti-fouling coating layer on the screen of displays. It is found that the hydrophobicity of PTFE films largely depends on the sputtering conditions, such as Ar gas flow and deposition time during sputtering process. These conditions are closely related to the deposition rate or thickness of PTFE film. Thus, it is also found that the deposition rate or the film thickness affects sensitively the geometrical morphology formed on surface of the rf-spluttered PTFE films. In particular, the PTFE film with 1950 nm thickness deposited for 30 minute at rf-power 50 W shows a very excellent optical transmittance of over 90% and a good anti-fouling property and a good durability.

RF MEMS Switches and Integrated Switching Circuits

  • Liu, A.Q.;Yu, A.B.;Karim, M.F.;Tang, M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.166-176
    • /
    • 2007
  • Radio frequency (RF) microelectromechanical systems (MEMS) have been pursued for more than a decade as a solution of high-performance on-chip fixed, tunable and reconfigurable circuits. This paper reviews our research work on RF MEMS switches and switching circuits in the past five years. The research work first concentrates on the development of lateral DC-contact switches and capacitive shunt switches. Low insertion loss, high isolation and wide frequency band have been achieved for the two types of switches; then the switches have been integrated with transmission lines to achieve different switching circuits, such as single-pole-multi-throw (SPMT) switching circuits, tunable band-pass filter, tunable band-stop filter and reconfigurable filter circuits. Substrate transfer process and surface planarization process are used to fabricate the above mentioned devices and circuits. The advantages of these two fabrication processes provide great flexibility in developing different types of RF MEMS switches and circuits. The ultimate target is to produce more powerful and sophisticated wireless appliances operating in handsets, base stations, and satellites with low power consumption and cost.

Design and analyes of reconfigurable inset-fed microstrip patch antennas for wireless sensor Networks (무선 센서 네트워크용 주파수 조정이 가능한 마이크로 스트립 패치 안테나 설계 및 해석)

  • Phan, Duy Thach;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.129-129
    • /
    • 2009
  • In this paper, a tunable microstrip patch antenna designed using RF MEMS switches is reported. The design and simulation antenna were performed using high frequency structure simulator (HFSS). The antenna was designed in ISM Band and operates simultaneously at 2.4 GHz and 5.7 GHz with a -10 dB return-loss bandwidth of 20 MHz and 180 MHz, respect-tively. To obtain high efficiency and improve integrated ability, the High Resistivity Silicon (HRS) wafer was used for the antenna. The antenna achieved high gain with 8 dB at 5.7 GHzand 1.5 dB at 2.4 GHz. The RF MEMS DC contact switches was simulated and analysis by ANSYS software.

  • PDF