• Title/Summary/Keyword: RF Power Amplifier

Search Result 310, Processing Time 0.027 seconds

Effective Measurement and modeling of memory effects in Power Amplifier (RF 전력 증폭기 메모리 효과의 효율적인 측정과 모델링 기법)

  • Kim, Won-Ho;HwangBo, Hoon;Nah, Wan-Soo;Park, Cheon-Seok;Kim, Byung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.261-264
    • /
    • 2004
  • In this paper, we identify the memory effect of high power(125W) laterally diffused metal oxide-semiconductor(LDMOS) RF Power Amplifier(PA) by two tone IMD measurement. We measure two tone IMD by changing the tone spacing and the power level. Different asymmetric IMD is founded at different center frequency measurements. We propose the Tapped Delay Line-Neural Network(TDNN) technique as the modeling method of LDMOS PA based on two tone IMD data. TDNN's modeling accuracy is highly reasonable compared to the memoryless adaptive modeling method.

  • PDF

The RF Power Amplifier Using Active Biasing Circuit for Suppression Drain Current under Variation Temperature (RF전력 증폭기의 온도 변화에 따른 Drain 전류변동 억제를 위한 능동 바이어스 회로의 구현 및 특성 측정)

  • Cho, Hee-Jea;Jeon, Joong-Sung;Sim, Jun-Hwan;Kang, In-Ho;Ye, Byeong-Duck;Hong, Tchang-Hee
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.81-86
    • /
    • 2003
  • In the paper, the power amplifier using active biasing for LDMOS MRF-21060 is designed and fabricated. Driving amplifier using AH1 and parallel power amplifier AH11 is made to drive the LDMOS MRF 21060 power amplifier. The variation of current consumption in the fabricated 5 Watt power amplifier has an excellent characteristics of less than 0.1A, whereas passive biasing circuit dissipate more than 0.5A. The implemented power amplifier has the gain over 12 dB, the gain flatness of less than $\pm$0.09dB and input and output return loss of less than -19dB over the frequency range 2.11~2.17GHz. The DC operation point of this power amplifier at temperature variation from $0^{\circ}C$ to $60^{\circ}C$ is fixed by active circuit.

3-Level Envelope Delta-Sigma Modulation RF Signal Generator for High-Efficiency Transmitters

  • Seo, Yongho;Cho, Youngkyun;Choi, Seong Gon;Kim, Changwan
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.924-930
    • /
    • 2014
  • This paper presents a $0.13{\mu}m$ CMOS 3-level envelope delta-sigma modulation (EDSM) RF signal generator, which synthesizes a 2.6 GHz-centered fully symmetrical 3-level EDSM signal for high-efficiency power amplifier architectures. It consists of an I-Q phase modulator, a Class B wideband buffer, an up-conversion mixer, a D2S, and a Class AB wideband drive amplifier. To preserve fast phase transition in the 3-state envelope level, the wideband buffer has an RLC load and the driver amplifier uses a second-order BPF as its load to provide enough bandwidth. To achieve an accurate 3-state envelope level in the up-mixer output, the LO bias level is optimized. The I-Q phase modulator adopts a modified quadrature passive mixer topology and mitigates the I-Q crosstalk problem using a 50% duty cycle in LO clocks. The fabricated chip provides an average output power of -1.5 dBm and an error vector magnitude (EVM) of 3.89% for 3GPP LTE 64 QAM input signals with a channel bandwidth of 10/20 MHz, as well as consuming 60 mW for both channels from a 1.2 V/2.5 V supply voltage.

Implementation of a CMOS RF Transceiver for 900MHz ZigBee Applications (ZigBee 응용을 위한 900MHz CMOS RF 송.수신기 구현)

  • Kwon, J.K.;Park, K.Y.;Choi, Woo-Young;Oh, W.S.
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.175-184
    • /
    • 2006
  • In this paper, we describe a 900MHz CMOS RF transceiver using an ISM band for ZigBee applications. The architecture of the designed rx front-end, which consists of a low noise amplifier, a down-mixer, a programmable gain amplifier and a band pass filter. And the tx front-end, which consists of a band pass filter, a programmable gain amplifier, an up-mixer and a drive amplifier. A low-if topology is adapted for transceiver architecture, and the total current consumption is reduced by using a low power topology. Entire transceiver is verified by means of post-layout simulation and is implemented in 0.18um RF CMOS technology. The fabricated chip demonstrate the measured results of -92dBm minimum rx input level and 0dBm maximum tx output level. Entire power consumption is 32mW(@1.8VDD). Die area is $2.3mm{\times}2.5mm$ including ESD protection diode pads.

Effect of Modulation Frequency of Power Amplifier on IMD Cancellation Performance of Predistortion Linearizer (RF 전치 왜곡된 전력 증폭기의 변조 주파수가 혼변조 개선량에 미치는 영향)

  • 최진철;조경준;김상희;김종현;이병제;김남영;이종철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.450-457
    • /
    • 2003
  • In this paper, we studied the effect of asymmetrical 3rd order IMD of power amplifier due to changes in modulation frequency on IMD cancellation performance. The phase extraction method for determining asymmetric rate for phase distortion of IMD is proposed and the phase difference between lower and upper 3rd order IMD is measured by this method. The phase compensation circuit to decrease the phase difference is also designed and fabricated. From the measurement results using the phase compensation circuit applied to 5 W RF power amplifier fur PCS applications, the 3rd order IMD cancellation performance can be achieved up to 2-tone spacing 1.5 MHz (phase difference within 10$^{\circ}$).

Constant-Amplitude Multi-Code Trans-Orthogonal Modulation (정진폭 다중부호 트랜스직교변조)

  • Hong, Dae-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.493-499
    • /
    • 2011
  • To improve the bandwidth efficiency of conventional orthogonal modulation, the MCTO(Multi-Code Trans-Orthogonal) modulation, which is modified orthogonal modulation, was proposed. However, the RF(Radio Frequency) power amplifier for the MCTO modulation is too complex to reject the amplitude distortion due to the non-constant amplitude property of the MCTO. Therefore, in this paper, CAMCTO(constant-amplitude multi-code trans-orthogonal) modulation is proposed by using the constant-amplitude encoding algorithm for multi-code signal. Additionally, the performance of the proposed CAMCTO modulation is compared with those of the orthogonal modulation and the MCTO modulation by using the computer simulation. The computer simulations show that the bandwidth efficiency of the proposed CAMCTO modulation is better than that of the conventional orthogonal modulation.

A study on Improving Intermodulaton Signal of the RF Power Amplifier Using Microwave Absorber (전파흡수체에 의한 전력증폭기의 혼변조 신호의 개선 효과에 관한 연구)

  • 양승국;전중성;김민정;예병덕;김동일
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.92-96
    • /
    • 2003
  • In this paper, 30 W power Amplifier for IMT-2000 repeater was developed gain flatness and the third IMD (Intermodulation distortion) by Microwave absorber. The absorption ability of the absorber is measured up to -10 ㏈ and -4 ㏈ at 3.6 ㎓, 2.3 ㎓ band respectively. Non using absorber power amplifier has the gain over 57 ㏈, the gain flatness of ${\pm}$0.33 ㏈ and the third IMD of 27 ㏈c at 33.3 W output. Otherwise, using absorber power amplifier has the gain over 58㏈, the gain flatness of less than ${\pm}$0.9, the third IMD over 29 ㏈c at the same output power. As a result, the characteristic of the different type show improvement of 1 ㏈ in gain, 0.3 ㏈ in Gain flatness and 1.77 ㏈c in IMD.

  • PDF

Study of Improved Efficiency Circuit for Envelope Tracking Amplifier in Cellular Radio Handset (샐룰러용 단말기의 포락선 추적 증폭기의 효율 개선회로에 관한 연구)

  • Jeong, Byeong-Koo;Kang, In-Ho;Sim, Jun-Hwan;Park, Dong-Kook;Kim, Joo-Yoen
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.9
    • /
    • pp.44-50
    • /
    • 2002
  • Recently, a envelope tracking(ET) amplifier that improves efficiency by changing of the bias according to the RF input level is presented to use for a high power amplifier of cellular radio handset using CDMA. The input and the output impedances of the ET amplifier may be varied by changing of the bias of the amplifier, and it makes the amplifier having low gain, low efficiency, and high input and output VSWR. In order to improve the input and the output mismatch of the amplifier, in this paper, two types of ET amplifier are suggested. In case of an ET amplifier using varactor diode, in experimentation, gain is improved about 7dB and the power consumption of the amplifier is better about 60% than that of the conventional amplifier. In case of a base voltage controlled ET amplifier, the gain and power consumption of the amplifier is improved about 9dB and 40% than those of the conventional amplifier, respectively.

Analysis of the Gate Bias Effects of the Cascode Structure for Class-E CMOS Power Amplifier (CMOS Class-E 전력증폭기의 Cascode 구조에 대한 게이트바이어스 효과 분석)

  • Seo, Donghwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.435-443
    • /
    • 2017
  • In this study, we analyzed the effects of the common-gate transistor bias of a switching mode CMOS power amplifier. Although the most earier works occured on the transistor sizes of the cascode structure, we showed that the gate bias of the common-gate transistor also influences the overall efficiency of the power amplifier. To investigate the effect of the gate bias, we analyzed the DC power consumption according to the gate bias and hence the efficiency of the power amplifier. From the analyzed results, the optimized gate bias for the maximum efficiency is lower than the supply voltage of the power amplifier. We also found that an excessively low gate bias may degrade the output power and efficiency owing to the effects of the on-resistance of the cascode structure. To verify the analyzed results, we designed a 1.9 GHz switching mode power amplifier using $0.18{\mu}m$ RF CMOS technology. As predicted in the analysis, the maximum efficiency is obtained at 2.5 V, while the supply voltage of power amplifier is 3.3 V. The measured maximum efficiency is 31.5 % with an output power of 29.1 dBm. From the measureed results, we successfully verified the analysis.

Technological Trends of C-/X-/Ku-band GaN Monolithic Microwave Integrated Circuit for Next-Generation Radar Applications (차세대 레이더용 C-/X-/Ku-대역 GaN 집적회로 기술 동향)

  • Ahn, H.K.;Lee, S.H.;Kim, S.I.;Noh, Y.S.;Chang, S.J.;Jung, H.U.;Lim, J.W.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.5
    • /
    • pp.11-21
    • /
    • 2022
  • GaN (Gallium-Nitride) is a promising candidate material in various radio frequency applications due to its inherent properties including wide bandgap, high carrier concentration, and high electron mobility/saturation velocity. Notably, AlGaN/GaN heterostructure field effect transistor exhibits high operating voltage and high power-density/power at high frequency. In next-generation radar systems, GaN power transistors and monolithic microwave integrated circuits (MMICs) are significant components of transmitting and receiving modules. In this paper, we introduce technological trends for C-/X-/Ku-band GaN MMICs including power amplifiers, low noise amplifiers and switch MMICs, focusing on the status of GaN MMIC fabrication technology and GaN foundry service. Additionally, we review the research for the localization of C-/X-/Ku-band GaN MMICs using in-house GaN transistor and MMIC fabrication technology. We also discuss the results of C-/X-/Ku-band GaN MMICs developed at Defense Materials and Components Convergence Research Department in ETRI.