• Title/Summary/Keyword: RF Detector

Search Result 121, Processing Time 0.026 seconds

Zero forcing based sphere decoder for generalized spatial modulation systems

  • Jafarpoor, Sara;Fouladian, Majid;Neinavaie, Mohammad
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.145-159
    • /
    • 2019
  • To reduce the number of radio frequency (RF) chains in multiple input multiple output (MIMO) systems, generalized spatial modulation (GSM) techniques have been proposed in the literature. In this paper, we propose a zero-forcing (ZF)-based detector, which performs an initial pruning of the search tree that will be considered as the initial condition in a sphere decoding (SD) algorithm. The proposed method significantly reduces the computational complexity of GSM systems while achieving a near maximum likelihood (ML) performance. We analyze the performance of the proposed method and provide an analytic performance difference between the proposed method and the ML detector. Simulation results show that the performance of the proposed method is very close to that of the ML detector, while achieving a significant computational complexity reduction in comparison with the conventional SD method, in terms of the number of visited nodes. We also present some simulations to assess the accuracy of our theoretical results.

A 3-5 GHz Non-Coherent IR-UWB Receiver

  • Ha, Min-Cheol;Park, Young-Jin;Eo, Yun-Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.277-282
    • /
    • 2008
  • A fully integrated inductorless CMOS impulse radio ultra-wideband (IR-UWB) receiver is implemented using $0.18\;{\mu}m$ CMOS technology for 3-5 GHz application. The UWB receiver adopts the non-coherent architecture, which removes the complexity of RF architecture and reduces power consumption. The receiver consists of inductorless differential three stage LNA, envelope detector, variable gain amplifier (VGA), and comparator. The measured sensitivity is -70 dBm in the condition of 5 Mbps and BER of $10^{-3}$. The receiver chip size is only $1.8\;mm\;{\times}\;0.9\;mm$. The consumed current is 15 mA with 1.8 V supply.

Covariance-based Recognition Using Machine Learning Model

  • Osman, Hassab Elgawi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.223-228
    • /
    • 2009
  • We propose an on-line machine learning approach for object recognition, where new images are continuously added and the recognition decision is made without delay. Random forest (RF) classifier has been extensively used as a generative model for classification and regression applications. We extend this technique for the task of building incremental component-based detector. First we employ object descriptor model based on bag of covariance matrices, to represent an object region then run our on-line RF learner to select object descriptors and to learn an object classifier. Experiments of the object recognition are provided to verify the effectiveness of the proposed approach. Results demonstrate that the propose model yields in object recognition performance comparable to the benchmark standard RF, AdaBoost, and SVM classifiers.

  • PDF

Design of DC-DC Boost Converter with RF Noise Immunity for OLED Displays

  • Kim, Tae-Un;Kim, Hak-Yun;Baek, Donkyu;Choi, Ho-Yong
    • Journal of Semiconductor Engineering
    • /
    • v.3 no.1
    • /
    • pp.154-160
    • /
    • 2022
  • In this paper, we design a DC-DC boost converter with RF noise immunity to supply a stable positive output voltage for OLED displays. For RF noise immunity, an input voltage variation reduction circuit (IVVRC) is adopted to ensure display quality by reducing the undershoot and overshoot of output voltage. The boost converter for a positive voltage Vpos operates in the SPWM-PWM dual mode and has a dead-time controller using a dead-time detector, resulting in increased power efficiency. A chip was fabricated using a 0.18 um BCDMOS process. Measurement results show that power efficiency is 30% ~ 76% for load current range from 1 mA to 100 mA. The boost converter with the IVVRC has an overshoot of 6 mV and undershoot of 4 mV compared to a boost converter without that circuit with 18 mV and 20 mV, respectively.

The Fabrication of ZnO UV Photodetector with p-type Inversion Layer and Analysis of Vrlph Properties (P형 반전층을 갖는 ZnO 자외선 수광소자의 제작과 Vrlph특성 분석)

  • Oh, Sang-Hyun;Kim, Deok-Kyu;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.883-888
    • /
    • 2007
  • Investigation of improving the properties of UV detector which uses the wide bandgap of ZnO are under active progress. The present study focused on the design and fabrication of i-ZnO/p-inversion $layer/n^--Si$ Epi. which is characterized with very thin p-type inversion layer for UV detectors. The i-ZnO thin film for achieving p-inversion layer which was grown by RF sputtering at $450^{\circ}C$ and then annealed at $400^{\circ}C$ in $O_2$ gas for 20 min shows good intrinsic properties. High (0002) peak intensity of the i-ZnO film is shown on XRD spectrum and it is confirmed by XPS analysis that the ratio of Zn : O of the i-ZnO film is nearly 1 : 1. Measurement shows high transmission of 79.5 % in UV range (< 400 nm) for the i-ZnO film. Measurement of $V_r-I_{ph}$ shows high UV photo-current of 1.2 mA under the reverse bias of 30 V.

Design of W-Band Diode Detector (W-Band 다이오드 검출기 설계)

  • Choi, Ji-Hoon;Cho, Young-Ho;Yun, Sang-Won;Rhee, Jin-Koo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.278-284
    • /
    • 2010
  • In this paper, a millimeter-wave detector using zero-bias schottky diode is designed and fabricated at W-band. It consists of LNA(Low Noise Amplifier) and detector module to improve sensitivity. LNA case with a highly stop-band characteristic is designed to prevent the oscillation by LNA MMIC chip. Diode detector of planar structure is fabricated for the easy connection with LNA module and zero bias Schottky diode is utilized. In practice, the fabricated diode detector have shown the detection voltage of 20~500 mV to the RF input power of -45~-20 dBm. The proposed W-band detector can be applicable to the passive millimeter image system.

Real-Time Respiration and Heartbeat Detector Using a Compact 1.6 GHz Single-Channel Doppler Sensor (소형화된 1.6 GHz 단일 채널 도플러 센서를 이용한 실시간 호흡 및 심장 박동 감지기)

  • Lee, Hyun-Woo;Park, Il-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.379-388
    • /
    • 2007
  • This paper presents a real-time respiration and heartbeat detector comprised of a 1.6 GHz single-channel Doppler sensor and analog/digital signal processing block for remote vital sign detection. The RF front end of the Doppler sensor consists of an oscillator, mixer, low noise amplifier, branch-line hybrid and patch antenna. We apply artificial transmission lines(ATLs) to the branch-line hybrid, which leads to a size reduction of 40 % in the hybrid, while its performance is very comparable to that of a conventional hybrid. The analog signal conditioning block is implemented using second order Sallen-Key active filters and the digital signal processing block is realized with a LabVIEW program on a computer. The respiration and heartbeat detection is demonstrated at a distance of 50 cm using the developed system.

Implementation of a 13.56 MHz 5kW RF Generator for ISM Band Applications (ISM 대역 응용분야에 사용되는 13.56 MHz 5kW RF 제너레이터 구현)

  • Yoon, Young-Chul;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.556-561
    • /
    • 2016
  • This paper describes implementation of a 13.56 MHz, 5 kW RF high power generator for ISM band applications. This RF generator consists of four LDMOS modules of 1.25kW class-AB push-pull power amplifier with drive amplifier and its outputs are combined by using Wilkinson type transmission-line transformers. Its generator has a high efficiency and output power better than linearity. In order to discharge power transistor heats, we used on water cooled copper plate. Also, these have a composite circuit of combiner and low-pass filter and safety circuit to detector over and reflected power. The RF generator has achieved a efficiency of 79 % at 5.33 kW of saturated power level experimentally.

Development of Moisture Content Measurement Device for Paddy Rice using Microwave Free Space Transmission (마이크로파 자유공간 전송을 이용한 산물벼 함수율 측정장치 개발)

  • 김기복;김종헌;노상하
    • Journal of Biosystems Engineering
    • /
    • v.24 no.3
    • /
    • pp.235-242
    • /
    • 1999
  • This study was conducted to develop a grain moisture meter using microwave free space transmission technique at X-band frequency. The 10.5GHz microwave oscillator using a dielectric resonator was designed and fabricated to transmit electromagnetic wave through standard horn antenna to a sample holder with the wetted Hwasung and Chuchung rough rice(12.00∼26.25%). To detect the output voltage of transmitted wave from receiving horn antenna, the detector was composed of shottkey diode and RF impedance matching circuit. The regression model for measurement of grain moisture content was developed. Its correlation coefficient and standard error of prediction (SEP) were found to be 0.9882 and 0.657 respectively between measure and predicted moisture contents.

  • PDF

Investigation of a Method for RF Circuits Analysis Based on Electromagnetic Topology

  • Park, Yoon-Mi;Chung, Young-Seek;Cheon, Chang-Yul;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.396-400
    • /
    • 2009
  • In this paper, electromagnetic topology (EMT) was used to analyze the electromagnetic compatibility (EMC) of RF circuits including passive and active components. It is difficult to obtain usable results for problems relating to electromagnetic coupling in complex systems when using conventional numerical or experimental methods. Thus it is necessary to find a new methodology for analyzing EMC problems in complicated electromagnetic environments. In order to consider the nonlinear characteristics of active components, a SPICE diode model was used. A power detector circuit and the receiver circuit of a radio control (RC) car were analyzed and experimented in order to verify the validity of this method.