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To reduce the number of radio frequency (RF) chains in multiple input multiple

output (MIMO) systems, generalized spatial modulation (GSM) techniques have

been proposed in the literature. In this paper, we propose a zero‐forcing (ZF)‐based
detector, which performs an initial pruning of the search tree that will be consid-

ered as the initial condition in a sphere decoding (SD) algorithm. The proposed

method significantly reduces the computational complexity of GSM systems while

achieving a near maximum likelihood (ML) performance. We analyze the perfor-

mance of the proposed method and provide an analytic performance difference

between the proposed method and the ML detector. Simulation results show that

the performance of the proposed method is very close to that of the ML detector,

while achieving a significant computational complexity reduction in comparison

with the conventional SD method, in terms of the number of visited nodes. We

also present some simulations to assess the accuracy of our theoretical results.
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1 | INTRODUCTION

Multipath propagation leads to a signal fading effect, which
can be mitigated using diversity in wireless systems [1].
Diversity is achieved by sending signals carrying the same
information via independently faded paths. Multiple input
multiple output (MIMO) systems provide space diversity,
which potentially increases the available degree of freedom.
Among the different transmitting techniques in MIMO sys-
tems, the Vertical Bell Lab Layered Space‐Time (V‐
BLAST) method is capable of achieving receive diversity
and exploiting the maximum degree of freedom in a wire-
less channel [2–5]. However, some of the challenges in
MIMO systems include designing a diversity and multiplex-
ing achieving technique, the cost of radio frequency (RF)
chains, and the complexity of joint detection at the receiver.

In order to overcome the challenge of the cost of multi-
ple RF chains, spatial modulation (SM) techniques are

introduced, in which the transmit antennas are selected
according to the data symbols. The SM method provides
the benefit of multiple transmit antennas and a lower num-
ber of RF chains. In the SM method, only one antenna is
active for transmitting the data, and the input data bits are
split into two groups [6]. One of the groups is used to select
the active antenna and the other one determines the trans-
mitting symbol. In this method, besides modulating the data
with a typical modulation scheme, the index of the active
antenna has information in its own right and can be consid-
ered as a new spatial dimension for the modulation. This
characteristic of SM systems reduces the implementation
complexity cost due to the lower number of RF chains [6].

However, SM has certain limitations: (a) The number of
transmit antennas has to be a power of two, which limits
the designing flexibility. (b) The SM algorithm fails to
exploit the available degrees of freedom since it deploys
only one antenna to transmit data. In the GSM technique,
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there are multiple transmit antennas, not all of which are
active [7,8]. The active transmit antennas may send
the same or different data symbols in order to achieve the
available diversity or degrees of freedom, respectively. The
GSM method can be considered as a combination of spatial
modulation and spatial multiplexing techniques. This leads
to a higher or equal spectral efficiency with lower transmit
antennas in comparison with the SM method [8].

Generally, in MIMO communication systems, the maxi-
mum likelihood (ML) detector achieves the maximum
receive diversity. However, the ML method is not practical
due to the very high computational complexity arising from
the massive joint search [9,10]. The computational complex-
ity of the ML method increases exponentially with the num-
ber of transmit antennas. In the GSM method, the indices of
the active antennas and data symbols have to be searched
jointly. Therefore, the computational complexity of the
receiver is still very high for the ML method. Numerous
detection methods have been provided in literature. Some of
these methods reduce the detection method to a tree search
using the QR decomposition of the channel matrix [10].
From the perspective of tree search, the sphere decoding
(SD) algorithm is an efficient solution for the ML search
[9,10]. However, the SD and ML methods still suffer from
an exponential computational complexity [10]. Several
methods for reducing the computational complexity of the
SD method have been presented in literature [11–16].

On the other hand, linear detection methods such as
zero forcing (ZF) and minimum mean squared error
(MMSE) benefit from a polynomial computational com-
plexity [2]. However, linear detection methods suffer from
poor performance and do not achieve the maximum avail-
able diversity [17]. In order to improve the performance of
linear equalizers, the Lattice Reduction (LR) method is
employed [18,19]. This method achieves the maximum
receive diversity with a relatively lower performance in
comparison with the ML method.

Several previous studies have demonstrated the feasibil-
ity of GSM and have proposed efficient detection methods.
Renzo and others extensively studied SM, which can be
regarded as GSM with a single active antenna [20,21]. Lee
and others presented an efficient circuit‐level implementa-
tion of a symbol detector for SM‐MIMO systems [22].
Xiao and others proposed the ordered block (OB) mini-
mum mean squared error (MMSE), where the transmit
antenna combinations are sorted first and the symbol vector
is estimated in sequence for each transmit antenna combi-
nation [23]. Chen and others employed a new criterion for
sorting the transmit antenna combinations to reduce the
complexity of the ordered block minimum mean squared
error (OB‐MMSE) [24]. Sphere decoding methods special-
ized for the SM‐MIMO systems have been studied [25–
27]. Cal‐Braz and others showed how the conventional

sphere decoding can be applied to GSM‐MIMO detection,
and evaluated the complexity of this method [28].

In this paper, we present a GSM MIMO detection
method that achieves a near ML performance with a signif-
icantly low computational complexity. The contributions of
this paper are summarized as follows:

• This paper generalizes the zero-forcing algorithm for a
GSM MIMO system, which performs an initial pruning of
the search tree. The SD algorithm searches the lattice
points corresponding to a reduced search space. The
reduction of the sphere-decoding step is due to the gener-
alized ZF and the nature of GSM and inactive antennas.

• The proposed method is assessed analytically, and the
performance is analyzed in terms of error probability. An
analytical performance gap is derived in terms of a pre-
determined threshold, which gives the system designer a
certain degree of freedom for the trade-off between com-
plexity and performance, analytically.

The rest of this paper is organized as follows. Section 2
describes the system model. The search space reduction
using the proposed zero‐forcing method is presented in
Section 3, and the proposed GSM detection algorithm is
presented in Section 4. The performance is analyzed in
Section 5. The simulation results are presented in Section 6
to assess the validity of the theoretical results. Finally, Sec-
tion 7 concludes the paper.

2 | SYSTEM MODEL

Consider a multiple‐antenna system with Nt transmit anten-
nas and Nr receiver antennas, as shown in Figure 1. Let H
denote the Nr × Nt MIMO channel matrix, and let M
denote the number of the active transmit antennas, where
M< Nt. The number of inactive antennas is denoted by

Nd = Nt − M. In this setting, we can have
Nt

M

� �
possible

combinations. In addition, let L be the BPSK size and K be
the number of the antenna subsets used. To be more pre-

cise, K ¼ Nt

M

� �� �
2P
, where b c2P is rounded down to the

closest smaller power of two integers.

Block 
of data

Serial 
to 

parallel

Active antenna 
selector

Symbol 
modulator

Switch

RF
RF

Proposed 
GSM 

dectector

s H n y

FIGURE 1 3 × 3 BPSK GSM MIMO system with two active
antennas
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At the transmitter, a block of independent information
bits is first fed into a GSM mapper. In each block, the first
MLog2(L) bits are mapped into a symbol vector denoted by
s ¼ s1; s2; . . . ; sM½ �T, where (.)T represents the transpose
operation. Then, the spatial modulator uses the remaining
Log2(K) bits to select the active transmit antennas, where

K ≤ Nt

M

� �
. Let Hk denote the Nr × M MIMO channel sub-

matrix corresponding to the active transmit antennas, where
k ∈ {1, 2, …, K}.

We assume that the elements of Hk, that is, [Hk]ij, are
identically and independently distributed (i.i.d.) complex
Gaussian random variables with zero mean and unit vari-
ance. We also assume that s and Hk are generated indepen-
dently. The received symbol vector can be expressed as:

y ¼ Hksþ n; (1)

where n is the white Gaussian noise vector with
E nnH½ � ¼ σ2I. The probability density function (PDF) of y
conditioned on Hk and s can be written as:

f ðyjs;HkÞ ¼ 1ffiffiffiffiffiffiffiffi
πσ2

p� �Nr
exp �ky�Hksk22
� �

: (2)

Considering the maximum entropy, we assume that the
transmitted symbols are equally probable. The joint ML
detector for the transmitted symbols and active antennas is:

fk̂; ŝg ¼ argm∈ 1;2;...;Kf g
s∈ SM

min ky�Hmsk22; (3)

where SM is the search space of the transmitted symbol
vector. The order of the ML search is KLM.

On the other hand, the ZF detector solves (3) by
neglecting the limited integer constraint, that is, s ∈ SM, as:

fk̂; ŝg ¼ argm∈ f1;2;...;Kg
s∈RM

min ky�Hmsk22: (4)

The ZF detector calculates ~ym ¼ Hy
my, where

Hy
m ¼ HH

mHm
	 
�1HH

m for all possible values of m, and
hence finds the smallest distance. In order to avoid the
complexity of calculating the matrix inversion K times K,
we propose the following the GSM‐ZF method.

The equalized vector ~y can be expressed as:

~y ¼ Hyy ¼ sþ ~n; (5)

where ~n ¼ Hyn. By following the same procedure as that
for the ZF method, the elements of ~y have to be projected
on the constellation points. However, since some of the
transmit antennas may be inactive, the zero point is added
to the constellation set to represent the inactive antennas.
For instance, in the binary modulation using the GSM‐ZF
method, this projection has to be performed on the set

{−1, 1, 0} [28]. A problem that arises here is that the
GSM‐ZF method may claim the number of inactive anten-
nas more than their actual number. This problem is
addressed in the method proposed in Section 3.

3 | SEARCH SPACE REDUCTION
USING THE PROPOSED ZERO‐
FORCING METHOD

Our proposed detection method searches a pruned detection
tree to find the shortest path that corresponds to the optimal
estimate. The detection tree is pruned via the GSM‐ZF
step.

To solve the detection problem for the system model of
the GSM‐MIMO shown in Figure 1, we consider the inac-
tive antennas as zero points in the constellation set, that is,
S = {−1, 1, 0}. For instance, for three transmit antennas and
two active antennas, the detection tree is as shown in Fig-
ure 2. Next, we propose a method to prune this tree search
and an algorithm to perform the search on the pruned tree.

We consider a threshold to generalize the ZF method
as:

log
f ~ykjs1ð Þ
f ~ykjs2ð Þ ≷ th; (6)

where ~yk ¼ Hy
ky. The PDF of the equalized vector ~yk ,

which is conditioned on the transmit symbol si and channel
matrix H, can be expressed as:

f ~ykjsið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2k

p exp � ~yk � sið Þ2
2σ2k

 !
; (7)

where σ2k ¼ σ2 HHH
	 
�1
h i

kk
, s1 ∈ S, s2 ∈ S and th is a pre-

determined threshold. The correlation imposed by the ZF
algorithm reduces the performance of the detector inher-
ently. However, an ML search is performed on the unreli-
able symbols detected by the ZF algorithm in the search
space, in order to decrease the performance loss caused by
ZF decoupling.
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01 –1 01

1
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1–1

(2)0

FIGURE 2 Detection tree for 3 × 3 BPSK GSM‐MIMO system
using two active antennas with added zero points
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For instance, for s1 = 1 and s2 = 0, (6) yields:

log
f ~ykjs1 ¼ 1ð Þ
~ykjs2 ¼ 0ð Þ ¼ log

1ffiffiffiffiffiffiffi
2πσ2k

p exp � ~yk�1ð Þ2
2σ2k

� �
1ffiffiffiffiffiffiffi
2πσ2k

p exp � ~yk
2

2σ2k

� � ≷ th; (8)

which leads to ~yk ≷ σ2k thþ 1
2, where σ2k th ¼

th σ2 HHH
	 
�1
h i

kk

� �
and σ2k th ¼ thk.

The ZF equalizer leads to a colored noise with the
covariance matrix σ2(HHH)−1. It can be seen that the
threshold relies on the covariance matrix of the colored
noise and the SNR. The covariance matrix of the colored
noise follows a Wishart distribution [17]. It should be
noted that at high SNR, thk tends to zero, which means that
the algorithm relies on the ZF detector symbols at high
SNR regime.

Similarly, we do the same calculations for the remaining
collection points, which results in the following decision
regions:

1. “Zero Region (ZR)”: GSM inactive antenna region:
~ykj j < 1

2 � thk .

If the kth element of the equalized vector lies in this
region, the kth antenna is considered to be inactive.

2. “One Region (R1)”: GSM active antenna corresponding
to symbol one: ~yk> 1

2 þ thk .

If the kth element of the equalized vector lies in this
region, the transmit symbol is considered to be one.

3. “Negative One Region (R-1)”: GSM active antenna:
~yk < �1

2 � thk.

If the kth element equalized vector lies in this region,
the transmit symbol is considered to be negative one.

4. “Uncertainty One Region (U1)”: the region where we
should be doubtful about the ZF detector:
1
2 � thk < ~yk < 1

2 þ thk:

In this region, the ZF detector is undecided between
zero and one.

5. “Uncertainty Negative One Region (U-1)”:
�1
2 � thk < ~yk < �1

2 þ thk .

In this region, the ZF detector is undecided between zero
and negative one. These regions are summarized in Figure 3.

If the observation is in the uncertainty region, the SD
algorithm performs search on the corresponding symbols.

For instance, if the observations of the first and the second
antennas lie in R‐1 and U1, respectively, the search tree is
reduced to Figure 4.

This event can prune the search tree considerably, espe-
cially if it occurs at the primary nodes of the search tree.
The set of selected symbols for the kth antenna is defined
as Dk. Indeed, Dk is the kth search space and the total
search space is defined as D ¼ fD1;D2; . . . ;DNtg. For
instance, in Figure 4, D1 ¼ f�1g and D2 ¼ f1; 0g.

It should be noted that the number of antennas that the ZF
detector detects in the inactive regions may be greater than
the actual number of inactive antennas (Nd). In this case, we
sort ~yk and choose Nd smallest antennas to be inactive, where
1 < Nd < Nt and the rest of the symbols are considered to be
in the U1 or U‐1 regions. We denote this event by E1 If the
number of zeroes that the ZF‐based algorithm declares is less
than Nd, among the approved symbols, the ones whose
observations are closer to zero are declared zero systemati-
cally. This event is also denoted by E2:

4 | PROPOSED GSM DETECTION
ALGORITHM

In this section, we present the proposed method in more
detail. This method generalizes the ZF detector by combin-
ing it with the generalized SD method for GSM‐MIMO
systems. By comparing the equalized observation with a
threshold, we reduce the search space and the search candi-
dates to create a subsearch space.

Next, the generalized SD algorithm is applied to perform
the search in the provided space. Generally, the SD first
selects a parameter R called the sphere radius. It then tra-
verses the entire tree (say from left to right). However, once

10–1

R-1 R1

ZR
U-1 U1

FIGURE 3 Zero, one, negative one, and uncertainty regions

–1

0–1

–1 01 –1 01

1

1

FIGURE 4 Pruned tree where ~yk< �1
2 � thk and

1
2 � thk < ~yk < 1

2 þ thk
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it encounters a node with a cumulative metric larger than R,
it does not follow down that branch. Hence, SD enumerates
all the leaf nodes that lie inside the sphere

��y�Hs
��2 ≤R.

This also explains the name of the algorithm [29].
To make the problem tangible, we start with an example

of a simple (not GSM) MIMO system. For instance, con-
sider the case in which BPSK modulation is used with
Nt = 3 and Nr = 3 (see Figure 5).

The lattice points (search candidates) for the SD algo-
rithm can be seen in Figure 6. Each lattice point in Fig-
ure 6 is a branch on the search tree. For example, point (a)
indicates the branch specified in Figure 5. In the SD algo-
rithm, all the branches (candidate points) are searched
inside a sphere with a radius R, and the minimum cost met-
ric is considered as the transmitted symbol. For example, if
point (a) has the minimum cost metric, this indicates that
all three antennas have sent symbol ‘one’.

However, in the proposed GSM‐MIMO system, we
encounter a different tree search. We consider the inactive
antennas as a zero point in the constellation set, that is, S
= {−1, 1, 0}. For instance, for three transmit antennas and
BPSK modulation with one inactive antenna Nd ¼ 1ð Þ, the
detection tree is as shown in Figure 2.

The lattice points for this example are plotted in Fig-
ure 7. It should be noted that in a GSM system, the sym-
metrical structure of the lattices is changed due to the
additional zeroes added to the constellation. For instance,
in the three‐dimensional example, some lattice points on
the x-y, y-z, or x-z plane are added to the search space. In
our proposed algorithm, the key point is the number of pre-
vious zeroes in each step. In each step, the number of zer-
oes in the previous step is counted; therefore, the following
cases may occur. From the step where there are some
remaining antennas and no antenna has been set to zero yet
to the last step, we take into account only zeroes, and our
search will not include the 1 and −1 points. For instance,
in Figure 2, if we reach point (1), since we have met no
zeroes yet, the next antenna has to be zero.

The next point is that in each step, if we have already
counted Nd zeroes, from that step to the end, our search
includes only 1 and −1 points, and the zero point will not be
included. For instance, in Figure 2, if we reach point (2),
since we have already counted one zero, (note that Nd ¼ 1),
we only consider –1 and 1 for the following steps.

Applying the ZF method, which equalizes the observa-
tion vector and compares them with some threshold, reduces
the search candidates. Suppose that the filled points in Fig-
ure 7 are selected via the ZF algorithm. Therefore, the SD
search is performed on these points and the point with the
minimum cost metric is considered as the transmitted symbol.
For example, if point (b) in Figure 7 has the minimum cost
metric, the transmit symbols are considered to be 1, −1, and
0, respectively. The algorithm is summarized in Algorithm 1.

In our detection algorithm, we have used the Fincke‐
Pohst enumeration. However, some minor changes are
applied to generalize the Fincke‐Pohst algorithm for a
GSM system. It should be noted that irrespective of the
enumeration method used, the processing step reduces the
number of search candidates in the SD algorithm, and thus,
the total complexity is decreased.

–1

–1

–1

1 –1
1

–11 1 –1 –11 1

1

FIGURE 5 Detection tree for the 3 × 3BPSK MIMO system

y

x

z

(a)

FIGURE 6 Lattice points for a traditional 3 × 3 BPSK MIMO
system

y

x

z

(b)

FIGURE 7 Lattice points for a 3 × 3 BPSK GSM‐MIMO
system with two active antennas
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ALGORITHM 1 The proposed algorithm

Generalization to Q2‐QAM:
The decision regions for the proposed method can be

generalized for an arbitrary real lattice or Q‐PAM modula-
tion scheme. For instance, the regions for 4‐PAM are
demonstrated in Figure 8.

In addition, for a circularly symmetric complex Gaus-
sian random vector, the system model in equation (1) can
be rewritten as:

ReðyÞ
ImðyÞ

� �
¼ ReðHkÞ �ImðHkÞ

ImðHkÞ ReðHkÞ

� �
ReðsÞ
ImðsÞ

� �

þ ReðnÞ
ImðnÞ

� �
;

where Re :ð Þ and Im :ð Þ denote the real and modulation
imaginary parts, respectively. Consequently, in Q2‐QAM,
Re sð Þ and Im sð Þ can be assumed to be Q‐PAM modulated
signals. Using this complex to real conversion, we can gen-
eralize the decision regions in the preprocessing step to a
Q2‐QAM modulation.

5 | PERFORMANCE ANALYSIS

In this section, we derive the upper bound of the error
probability of the proposed algorithm. We first expand Pe

as:

Pe ¼ EH Es Ps ŝ≠ sjHð Þf gf g; (9)

where Ps Eð Þ is the probability that event E occurs, given
that s is transmitted, ie P Eð Þ ¼ Es Ps Eð Þf g.

We make the expansion [16]:

Ps ŝ≠ sjHð Þ ¼ Ps ŝ≠ sjs∈D;Hð Þ
� Ps s∈DjHð Þ þ Ps ŝ≠ sjs ∉ D;Hð Þ
� Ps s ∉ DjHð Þ:

(10)

Denoting the exact SD solution by ŝSD, it can be shown
that

Ps ŝ≠ sjs∈D;Hð Þ≤

Ps ŝSD ≠ sjs∈D;Hð Þ≤ Ps ŝSD ≠ sjHð Þ
Ps s∈DjHð Þ :

(11)

310–1–3

Uncertainty regions

thk – (3/2)–thk – (3/2) –thk – (1/2) thk – (1/2) –thk + (1/2) thk + (1/2) –thk + (3/2) thk + (3/2)

FIGURE 8 Decision regions for 4‐PAM modulation

Preprocessing
for k=1: M

thk=σk
2 th

Equalization

Performing the region selection on k

eliminate the ambiguities ( )
Construct Dk

end

SD algorithm1

Input: y, R, set, t, distance
Output: ŝ (detectedsymb)
set=D; k=size(s); ŝ =zeros(k, 1);
find the QR decomposition of matrix H
temps=zeros(k, 1); FLAG=0; CNT=0; R=realmax; 

TQ ∗=y y

H y=

;
GSM-SD( y

y

y

, R, set, k, 0);
if FLAG>0 r= ŝ ;

else r=0
end

function GSM-SD(y, R, set, t, distance)
if we are visiting a leaf node (t=1)

find the number of zeroes;
if only one zero is remained

temps(1) = 0;
d = abs(y(1)-R(1,:)*temps)2+distance;
if the metric d is smaller than the radius R

ŝ =temps;
R=d;
FLAG=FLAG+1;

end
else
for i = 1:size of Dk(t)

temps(1) = set(t,i);
d = abs(y(1)-R(1,:)*temps)2+distance;
if the metric d is smaller than the radius R

ŝ =temps;
R=d;
FLAG=FLAG+1;

end
end

end
else

for i = 1:size of Dk(t)
if t=Nd and we have not had any zeroes yet

temps(t) =0;
end
temps(t) = set(t,i);
find the number of zeroes 
if the number of zeroes is Nd

size of Dk(1:trans_antenna_no-1) =2;
end

d =abs(y(t)-R(t,t: end)*temps(t: end))2+distance;
if the metric is smaller than R

GSM-SD(y, R, set, t-1, d);
end

end
end

*The SD algorithm is based on the Fincke‐Pohst detection algorithm [29].
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It should be noted that the first inequality in the above
equation follows from the fact that

Ps ŝSD ≠ sjs∈D;Hð Þ

¼ Ps

[
si ∈ eN

ky�Hsik≤ ky�Hskjs∈D;H

 !
;

and

Ps ŝ ≠ sks∈D;Hð Þ

¼ Ps

[
si ∈D

ky�Hsik ≤ ky�Hskjs∈D;H

 !
:

Therefore, since D ⊂ eN, we have

Ps ŝ ≠ sjs∈D;Hð Þ ≤ Ps ŝSD ≠ sjs∈D;Hð Þ:

Substituting (11) in (10), and considering the fact that
Ps ŝ ≠ sjs∈D;Hð Þ≤ 1, yields

Ps ŝ ≠ sjHð Þ≤Ps ŝSD ≠ sjHð Þ þ Ps s ∉ DjHð Þ: (12)

Theorem. The probability of error for the pro-
posed method for BPSK is bounded as:

Pe SDð Þ≤Pe ≤Pe SDð Þ þ κ; (13)

where

κ ¼ 8
3 Nr � Ntð Þ! e

�th SNR2

4ðth2 þ SNRÞ

� �Nr�Ntþ1
2

�KNr�Ntþ1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
th2 þ SNR

4

s0
@

1
A;

(14)

and Kυ xð Þ is the modified Bessel function of the sec-
ond kind defined in [30]

Kυ xð Þ ¼
Z1
0

e�x cosh t cosh υtdt:

Proof. See Appendix A.
Fortunately, the modified Bessel function is a very

rapidly decreasing function of its argument as seen in Fig-
ure 9. This shows that the performance gap between the
proposed method and the SD algorithm vanishes rapidly as
the SNR increases.

It should be noted that the pseudo inverse computational
complexity is of a polynomial order [31], while the SD
search imposes an exponential computational complexity. It
should also be noted that any SD algorithm must compute
the QR decomposition of the channel matrix H. Therefore,

we calculate the pseudo inverse of a triangular matrix,
which has a much lower computational complexity com-
pared to the exponential computational complexity of the
SD search.

6 | SIMULATION RESULTS

In this section, a number of numerical examples are pre-
sented. We verify the claimed theoretical results in terms
of the performance and the complexity of the proposed
method. All the MIMO channels are considered to be
i.i.d. complex Gaussian with zero mean and unit variance.
The performance of the proposed method is evaluated on
the basis of symbol error rate. The number of visited
nodes in the SD algorithm is also calculated in order to
compare the complexity of the proposed method with that
of some other detection methods. The average symbol
error rate vs SNR is plotted.

6.1 | Effect of threshold on the performance
of the proposed detector

In this simulation, the number of transmit and receive
antennas are considered to be equal ðNr ¼ Nt ¼ 3Þ, and the
number of inactive antennas is considered to be Nd = 1.
As seen in Figure 10, as the threshold increases (th = 1, 3,
7), the error probability decreases and gets closer to the
ML performance. In Figure 11, it can be seen that an
increase in the threshold leads to an increase in the com-
plexity in terms of the percentage of the total number of
visited nodes. However, the complexity is always smaller
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FIGURE 9 Modified Bessel function of the second kind for
v ¼ 1
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than that of the conventional SD method. A Fincke‐Pohst
SD algorithm with an initial radius R = ∞ combined with
the GSM search strategy presented in [28] is compared
with the proposed algorithm. It is worth noting that irre-
spective of the SD algorithm that is used, the proposed
pruning algorithm reduces the number of visited nodes.
According to the simulations, the proper choice of the
threshold depends on the SNR and the system configura-
tions, for example, the number of transmit and receive
antennas. For instance, for a three‐antenna system, it can
be seen that the simulated range of SNRs (choosing th =
3) achieves a near ML performance and reduces the com-
putational complexity considerably.

6.2 | Performance of the proposed method
for different number of transmit and receive
antennas

This simulation is performed with Nd ¼ 2 and th = 8 for
the set of transmit and receive antennas 4, 5, 6. As
expected, it is seen that increasing the number of antennas
increases the diversity gain, and the performance of the
proposed method is equal to that of the SD method in [28]
for this choice of threshold (Figure 12). In terms of com-
plexity, this increase in the number of antennas leads to an
increase in the complexity (Figure 13). Again, it can be
seen that the number of visited nodes is significantly smal-
ler than that of the sphere decoding method in [28].
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Figures 14 and 15 show the configuration in which the
number of transmit and receive antennas are different. It
can be seen that when the number of receive antennas is
more than that of the transmit antennas, the ZF detected
symbol is more reliable, and thus the total computational
complexity is reduced.

6.3 | Effect of the number of active antennas
on the performance of the proposed detector

Figures 16 and 17 show the performance of the proposed
detector with h ¼ 6, Nr ¼ Nt ¼ 5 for two different cases

Nd ¼ 1 and Nd ¼ 2 Similar results can be observed in these
figures.

6.4 | Theoretical performance difference
between the ML and the proposed method

In this simulation, the set of assumptions th = 1, 2, and 3,
and Nr ¼ Nt ¼ 3 and Nd ¼ 1 are considered. Figure 18
shows that (14) decreases as the threshold increases. It
also shows that the theoretical performance difference fol-
lows the simulated performance difference for almost all
SNRs.
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6.5 | Performance of the proposed method
for higher order modulations

Figures 19 and 20 show the performance and complexity
of the proposed method for 16QAM modulation. In this
simulation, th = 7, Nr ¼ Nt ¼ 6, and Nd ¼ 3. It is observed
that the proposed method achieves a near ML performance
with a lower computational complexity in comparison with
the method of [28].

6.6 | Application of the proposed pruning
method to more powerful sphere decoders

As mentioned previously, the Fincke‐Pohst SD algorithm
with R = ∞ can be modified to reduce the number of

visited nodes. Various strategies have been proposed in the
literature to reduce the computational complexity of the SD
algorithm. These strategies are mainly based on the intro-
duction of an initial radius, eg [29], or a more effective
body search scheme, for example, branches restriction
incremental distance sphere decoding (BR‐ID SD) [28]. As
shown in Figures 21 and 22, we apply the proposed prun-
ing method to the method proposed in [29], in which R is
considered proportional to σ2 and is updated if no lattice is
found. The BR‐ID SD method [28] and the SD method
[29] are also simulated for comparison. A four‐transmit‐
and‐receive antenna system with two active antennas is
considered with th = 3.
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As seen in Figures 21 and 22, the proposed method
reduces the complexity, especially at low SNRs with a near
ML symbol error probability.

7 | CONCLUSION

In this paper, we proposed a ZF‐based detector combined
with the SD method to reduce the computational complexity
while achieving a near ML performance. We analyzed the
performance of the proposed method and provided an analy-
sis of the performance difference between the proposed
method and the ML detector. Simulation results showed that
the performance of the proposed method is very close to that
of the ML detector while achieving a significant computa-
tional complexity reduction compared to the conventional
SD method in terms of the number of visited nodes. We pro-
vided an analytic performance gap between the proposed
detector and the ML detector. We also presented some simu-
lations to assess the accuracy of our theoretical results.
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APPENDIX A

PROOF OF THEOREM

We assume that the kth transmitted symbol is ci, that is, sk = ci.

Using the union bound, ie
SN
i¼ 1

Ai � ∑
N

i¼ 1
PðAiÞ, results in

Pðsk ∉ DkÞ ¼ P
[Nt

k¼1

sk ∉ Dk

 !
� ∑

N t

K¼1
ðsk ∉ DkÞ; (A1)

where Dk is the search space.
One can expand Pðsk ∉ DkÞ depending on the event that

the transmitted symbol is one of the zero or not zero con-
stellation points, as:

Pðsk ∉ DkÞ ¼ EHfPðsk ∉ Dkjsk ¼ 0;HÞPðsk ¼ 0Þ
þ Pðsk ∉ Dkjsk ¼ 1;HÞPðsk ¼ 1Þ
þ Pðsk ∉ Dkjsk ¼ �1;HÞPðsk ¼ �1Þg:

(A2)

In order to simplify (A2), we need to calculate the terms
Pðsk ∉ Dkjsk ¼ 0;HÞ, Pðsk ∉ Dkjsk ¼ 1;HÞ, and
Pðsk ∉ Dkjsk ¼ �1;HÞ.

Assuming sk = 0, the event sk ∉ Dk happens when
~yk ∈ZR or when E1 occurs. The set ZR is complementary
to the set ZR. Therefore,

Pðsk ∉ Dkjsk ¼ 0;HÞ ¼ P ~y∈ZR∪ðE1Þ
	 


; (A3)

where the event E1 is the event that ~ym ∈ZR;~ym<~yk, sm ≠
0 for m ≠ k.

156 | JAFARPOOR ET AL.



The probability of E1 can be expressed as:

PðE1Þ � P ~ym ∈ZR; sm 6¼ 0ð Þ
¼ P ~ym∈ ZRjsm 6¼0

� �
Pðsm 6¼ 0Þ: (A4)

Therefore, we have

Pðsk ∉ Dkjsk ¼ 0;HÞ � P ~yk ∈ZR
	 


þ P ~ym ∈ZRjsm 6¼ 0ð ÞPðsm 6¼ 0Þ: (A5)

Given sk = 0 and H, the pdf of ~yk can be written as:

f ð~ykjfsk ¼ 0;HÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2k

p exp � ~y2k
2σ2k

� �
d~yk (A6)

Thus, we can write

Pð~yk ∈ZRjsk ¼ 0;HÞ

¼
Z�1
2 �thk

�1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2k

p exp
�~y2k
2σ2k

� �
d~yk

þ
Z1

1
2þthk

1ffiffiffiffiffiffiffiffiffiffi
2πσ2k

p exp
�~y2k
2σ2k

� �
d~yk :

(A7)

According to the definition of the function Q, ie:

QðxÞ ¼
Z1
x

1ffiffiffiffiffi
2π

p exp
�x2

2

� �
dx; (A8)

and by defining the variable ~zk ¼ ~yk
σk
, we can rewrite (A7) as:

Pð~yk ∈ZRjsk ¼ 0;HÞ

¼
Z�1
2 �thk
σk

�1

1ffiffiffiffiffi
2π

p exp
�~z2k
2

� �
d~zk

þ
Z1

1
2þthk
σk

1ffiffiffiffiffi
2π

p exp
�~z2k
2

� �
d~zk ¼ 2Q thσk þ 1

2σk

� �
;

(A9)

where σk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2½ðHHHÞ�1�kk

q
, [(HHH)−1]kk = τk and

SNR ¼ 1
σ2. Hence, we have

Pð~yk ∈ZRjsk ¼ 0;HÞ ¼ 2Q th
ffiffiffiffiffiffiffiffiffiffi
τk

SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τk

r� �
:

(A10)

Now, given sm = 1, the pdf of ~ym is

f ð~ymjsm ¼ 1;HÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2m

p exp
�ð~ym � 1Þ2

2σ2m

 !
; (A11)

and consequently,

Pð~ym ∈ZRjsm ¼ 1;HÞ

¼
Z12�thm

�1
2 þthm

1ffiffiffiffiffiffiffiffiffiffi
2πσ2x

p exp
�ð~ym � 1Þ2

2σ2m

 !
d~ym

¼ 1�
Z�1
2 þthm

�1

1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2m

p exp
�ð~ym � 1Þ2

2σ2m

 !
d~ym

�
Z1

1
2�thm

1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2m

p exp
�ð~ym � 1Þ2

2σ2m

 !
d~ym :

(A12)

According to the definition of the function Q and by
defining the variable ~zm ¼ ~ym�1

σm
, we can write:

Pð~ym ∈ZRjsm ¼ 1;HÞ

¼ 1�
Z�3
2 þthm
σm

�1

1ffiffiffiffiffi
2π

p exp
�~z2m
2

� �
d~zm

�
Z1

�1
2 þthm

σm

1ffiffiffiffiffi
2π

p exp
�~z2m
2

� �
d~zm

¼ Q thσm þ 1
2σm

� �
� Q

3
2σm

� thσm

� �
;

(A13)

where σm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2½ðHHHÞ�1�mm

q
, [(HHH)-1]mm = τm and

SNR ¼ 1
σ2.

Hence,

Pð~ym ∈ZRjsm ¼ 1;HÞ ¼ Q th
ffiffiffiffiffiffiffiffiffiffi
τm
SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τm

r� �

� Q
3
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τm

r
� th

ffiffiffiffiffiffiffiffiffiffi
τm
SNR

r� �
:

(A14)

The same calculations can be applied for
Pð~ym ∈ZRjsm ¼ �1;HÞ. Thus, we have

Pðsk ∉ Dkjsk ¼ 0;HÞ � 2Q th
ffiffiffiffiffiffiffiffiffiffi
τk

SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τk

r� �

þ 4
3
Q th

ffiffiffiffiffiffiffiffiffiffi
τm
SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τm

r� �

� 4
3
Q

3
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τm

r
� th

ffiffiffiffiffiffiffiffiffiffi
τm
SNR

r� �
:

(A15)
Now, we consider Pðsk ∉ Dkjsk ¼ 0;HÞ. Assuming

sk ≠ 0, we have
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Pðsk ∉ Dkjsk ¼ 1;HÞ ¼ Pð~yk ∈R1∪ðE2ÞÞ; (A16)

and

Pðsk ∉ Dkjsk ¼ 1;HÞ ¼ Pð~yk ∈R� 1∪ðE2ÞÞ; (A17)

where the event E2 is the event that ~ym ∈ZR, ~ym>~yk , sm = 0
for m ≠ k.

The probability of E1 can be expressed as:

PðE2Þ � Pð~ym ∈ZR; sm ¼ 0Þ
¼ Pð~ym ∈ZRjsm ¼ 0ÞPðsm ¼ 0Þ: (A18)

We have,

Pðsk ∉ Dkjsk ¼ 1;HÞ � Pð~yk ∈R1Þ
þ Pð~ym ∈ZRjsm ¼ 0ÞPðsm ¼ 0Þ; (A19)

where the pdf of ~yk can be written as:

f ð~ykjsk ¼ 1;HÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2k

p exp
�ð~yk � 1Þ2

2σ2k

 !
d~yk : (A20)

Thus,

Pð~yk ∈R1jsk ¼ 1;HÞ ¼
Z12�thk

�1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2k

p exp
�ð~yk � 1Þ2

2σ2k

 !
d~yk :

(A21)
According to the definition of the function Q and by

defining the variable ~zk ¼ ~yk�1
σk

, we can write:

Pð~yk ∈R1jsk ¼ 1;HÞ

¼
Z� thkþ1

2
σk

� �

�1

1ffiffiffiffiffi
2π

p exp �ð~zkÞ2
2

 !
d~zk

¼ Q thσk þ 1
2σk

� �
:

(A22)

Similarly, we have

Pð~yk ∈R1jsk ¼ 1;HÞ ¼ Q th
ffiffiffiffiffiffiffiffiffiffi
τk

SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τk

r� �
; (A23)

and for Pð~ym ∈ZRjsm ¼ 0;HÞ, we can write

Pð~ym ∈ZRjsm ¼ 0;HÞ ¼ 2Q th
ffiffiffiffiffiffiffiffiffiffi
τm
SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τm

r� �
:

(A24)

Therefore,

Pðsk ∉ Dkjsk ¼ 1;HÞ � Q th
ffiffiffiffiffiffiffiffiffiffi
τk

SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τk

r� �

þ 4
3
Q th

ffiffiffiffiffiffiffiffiffiffi
τm
SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τm

r� �
:

(A25)

Now, for Pðsk ∉ Dkjsk ¼ �1;HÞ, we have

Pðsk ∉ Dkjsk ¼ �1;HÞ � Pð~yk ∈R� 1Þ
þ Pð~ym ∈ZRjsm ¼ 0ÞPðsm ¼ 0Þ: (A26)

Given sk = −1, the pdf of ~yk can be expressed as:

f ð~ykjsk ¼ �1;HÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2k

p exp �ð~yk � 1Þ2
σ2k

 !
d~yk : (A27)

Thus, we have

Pð~yk ∈R� 1jsk ¼ �1;HÞ

¼
Z1

1
2þthk

1ffiffiffiffiffiffiffiffiffiffi
2πσ2k

p exp �ð~yk þ 1Þ2
2σ2k

 !
d~yk :

(A28)

As with (A22), we can write:

Pð~yk ∈R� 1jsk ¼ �1;HÞ ¼
Z1

1
2þthk
σk

1ffiffiffiffiffi
2π

p exp �~z2k
2

� �
d~zk

¼ Q th
ffiffiffiffiffiffiffiffiffiffi
τk

SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τk

r� �
:

(A29)Therefore,

Pð~ykjsk ¼ �1;HÞ � Q th
ffiffiffiffiffiffiffiffiffiffi
τk

SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τk

r� �

þ 4
3
Q th

ffiffiffiffiffiffiffiffiffiffi
τm
SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τm

r� �
:

(A30)

Finally, we can express (A2) as:

Pðsk ∉ DkÞ � EH

�
1
3

�
Q th

ffiffiffiffiffiffiffiffiffiffi
τk

SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τk

r� �
þ

2Q th
ffiffiffiffiffiffiffiffiffiffi
τk

SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τk

r� �

þ Q th
ffiffiffiffiffiffiffiffiffiffi
τk

SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τk

r� ��

þ 2
3

�
2Q th

ffiffiffiffiffiffiffiffiffiffi
τm
SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τm

r� �

þ 2Q th
ffiffiffiffiffiffiffiffiffiffi
τm
SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τm

r� �

� 2Q
3
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τm

r
� th

ffiffiffiffiffiffiffiffiffiffi
τm
SNR

r� �

þ 2Q th
ffiffiffiffiffiffiffiffiffiffi
τm
SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τm

r� ��


� EH

�
1
3

�
4Q th

ffiffiffiffiffiffiffiffiffiffi
τk

SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τk

r� �� �

þ 2
3

6Q th
ffiffiffiffiffiffiffiffiffiffi
τm
SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τm

r� �� ��

:

(A31)

Using the equality QðxÞ < 1
2 e

�x2
2 for the function Q, we

have
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Eτkm Q th
ffiffiffiffiffiffiffiffiffiffi
τk

SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τk

r� �� 


�
Z1
0

1
2
exp � th

ffiffiffiffiffiffiffiffiffiffi
τk

SNR

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffi
SNR
τk

r� �2 !
;

� 1
ðNr � NtÞ! τ

Nr�Nt
k e�τkdτk

(A32)

which can be simplified as:

1
ðNr � NtÞ!�

8
6
e�th

Z1
0

e
� th2

SNRþ1

� �
τk
e
�SNR
4τk τ

Nr�Nt
1

k dτk: (A33)

Now, according to the integral [32]:

Z1
0

yv�1e
�β
y e�γydy ¼ 2

β

γ

� �v
2

Kvð2
ffiffiffiffiffi
βγ

p
Þ; (A34)

where KvðxÞ is the modified Bessel function of the second
kind [30]. For v� 1 ¼ Nr � Nt, γ ¼ th2

SNR þ 1 ¼ th2þSNR
SNR

and β ¼ SNR
4 , we have

1
ðNr � NtÞ!�

8
6
e�th

Z1
0

e
� th2

SNRþ1

� �
τk
e
�SNR

4τk τ
Nr�Nt

1
k dτk

¼ 8
3ðNr � NtÞ! e

�th SNR2

4ðth2 þ SNRÞ

� �Nr � Nt þ 1
2

�KNr�Ntþ1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
th2 þ SNR

4

s0
@

1
A:

(A35)

Finally, we rewrite the error probability in equality as
(13) and (14).
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