• Title/Summary/Keyword: RCP 8.5

Search Result 398, Processing Time 0.03 seconds

Prospect of Climate Changes for the Mid and Late 21st Century Using RegCM4.0 over CORDEX II East Asian Region (RegCM4.0을 활용한 CORDEX II 동아시아 지역의 21C 중·후반 기후 변화 전망)

  • Kim, Tae-Jun;Suh, Myoung-Seok;Chang, Eun-Chul
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.165-181
    • /
    • 2019
  • In this study, the regional climate model, RegCM4.0 (25 km), with the HadGEM2-AO data as boundary conditions, was used to simulate the mean climate changes in the mid and late 21st century for CORDEX Phase 2 East Asian region. 122 years (1979~2100) of simulation were performed, and RCP 4.5 and RCP 8.5 were used for the simulation of future climate. In the mid-21st century, the temperature is expected to increase by about 0.5 to $3.0^{\circ}C$ in all regions of East Asia, regardless of season and scenario. The increase in temperature is greater in summer and winter, especially in the northern part of simulation domain. Interannual variability (IAV) is expected to decrease by 25% in summer for RCP 8.5, while it is expected to increase by more than 30% in autumn for both scenarios. Regardless of the scenario, the precipitation in South Korea is expected to increase in late June but decrease in mid-July, with an increase in precipitation greater than $100mm\;day^{-1}$. In RCP 4.5 of the late 21st century, relatively uniform temperature increase ($1.0{\sim}2.5^{\circ}C$) is expected throughout the continent, while RCP 8.5 shows a very diverse increase ($3.0{\sim}6.0^{\circ}C$) depending on season and geographical location. In addition, the IAV of temperature is expected to decrease by more than 35% in both scenarios in the summer. In most of the Northwest Pacific region, precipitation is expected to decrease in all seasons except for the summer, but in South Korea, it is projected to increase by about 10% in all seasons except autumn.

Economic Assessment for Flood Control Infrastructure under Climate Change : A Case Study of Imjin River Basin (기후변화를 고려한 홍수방재시설물의 경제성분석 : 임진강 유역사례)

  • Kim, Kyeongseok;Oh, Seungik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • In Imjin River basin, three floods occurred between 1996 and 1999, causing many casualties and economic losses of 900 billion won. In Korea, flood damage is expected to increase in the future due to climate change. This study used the climate scenarios to estimate future flood damage costs and suggested a real options-based economic assessment method. Using proposed method, the flood control infrastructures in Imjin River basin were selected as a case study site to analyze the economic feasibility of the investment. Using RCP (Representative Concentration Pathway) climate scenarios, the future flood damage costs were estimated through simulated rainfall data. This study analyzed the flood reduction benefits through investment in the flood control infrastructures. The volatility of flood damage reduction benefits were estimated assuming that the RCP8.5 and RCP4.5 climate scenarios would be realized in the future. In 2071, the project option value would be determined by applying an extension option to invest in an upgrading that would allow the project to adapt to the flood of the 200-year return period. The results of the option values show that the two investment scenarios are economically feasible and the project under RCP8.5 climate scenario has more flood damage reduction benefits than RCP4.5. This study will help government decision makers to consider the uncertainty of climate change in the economic assessment of flood control infrastructures using real options analysis. We also proposed a method to quantify climate risk factors into economic values by using rainfall data provided by climate scenarios.

Impact of Changes in Climate and Land Use/Land Cover Change Under Climate Change Scenario on Streamflow in the Basin (기후변화 시나리오하의 기후 및 토지피복 변화가 유역 내 유출량에 미치는 영향 분석)

  • Kim, Jin Soo;Choi, Chul Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • This study is intended to predict variations in future land use/land cover(LULC) based on the representation concentration pathway(RCP) storyline that is a new climate change scenario and to analyze how future climate and LULC changes under RCP scenario affects streamflow in the basin. This study used climate data under RCP 4.5 and 8.5 and LULC change scenario is created by a model that is developed using storyline of RCP 4.5 and 8.5 and logistic regression(LR). Two scenarios(climate change only and LULC change only) were established. The streamflow in future periods under these scenarios was simulated by the Soil and Water Assessment Tool(SWAT) model. Each scenario showed a significant seasonal variations in streamflow. Climate change showed that it reduced streamflow in summer and autumn while it increased streamflow in spring and winter. Although LULC change little affected streamflow in the basin, the pattern for increasing and decreasing streamflow during wet and dry climate condition was significant. Therefore, it's believed that sustainable water resource policies for flood and drought depending on future LULC are required.

Predicting change of suitable plantation of Schisandra chinensis with ensemble of climate change scenario (기후변화 시나리오 앙상블을 통한 오미자의 재배적지 변화 예측)

  • Lee, Sol Ae;Lee, Sang-Hyuk;Ji, Seung-Yong;Choi, Jaeyong
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.1
    • /
    • pp.77-87
    • /
    • 2016
  • Predicting possible distributed area of Schisandra chinensis which has long term cultivation period among non-timber forest products is needed to be studied to deal with climate change. Hence, distribution of Schisandra chinensis in the 2050s and 2070s was predicted under two scenario, RCP 4.5 and RCP 8.5, with ensemble of 5 climate models used in IPCC AR5. According to estimation using RCP 4.5, distribution of Schisandra chinensis in 2050s appeared to decrease 43% of current area and appeared to decrease 57% in 2070s respectively. Moreover, According to estimation using RCP 8.5, distribution of Schisandra chinensis in 2050s appeared to decrease 55% of current area and appeared to decrease 85% in 2070s. As a final outcome, Schisandra chinensis was estimated to extinct in the future except Gangwon-do and Gyeongsangbuk-do when analyzing change between current distributed area and future distributed area. As a result, those areas were classified as vulnerable areas to climate change. Therefore, Gangwon-do and Gyeongsangbuk-do were thought to be ideal for growing Schisandra chinensis. The result from this study can be used to provide basic information for selecting proper area of Schisandra chinensis considering climate change effect.

Predicting the Suitable Habitat of Amaranthus viridis Based on Climate Change Scenarios by MaxEnt (MaxEnt를 활용한 청비름(Amaranthus viridis)의 기후변화 시나리오에 의한 서식지 분포 변화 예측)

  • Lee, Yong Ho;Hong, Sun Hee;Na, Chae Sun;Sohn, Soo In;Kim, Myung Hyun;Kim, Chang Seok;Oh, Young-Ju
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.240-245
    • /
    • 2016
  • This study was conducted to predict the changes of potential distribution for invasive alien plant, Amaranthus viridis in Korea. The habitats of A. viridis were roadside, bare ground, farm area, and pasture, where the interference by human was severe. We used maximum entropy modeling (MaxEnt) for analyzing the environmental influences on A. viridis distribution and projecting on two different representative concentration pathways (RCP) scenarios, RCP 4.5 and RCP 8.5. The results of our study indicated annual mean temperature, elevation and precipitation of coldest month had higher contribution for A. viridis potential distribution. Projected potential distribution of A. viridis will be increased by 110% on RCP 4.5, 470% on RCP 8.5.

Prediction of Adult Emergence Time and Generation Number of Overwintered Small Brown Planthopper, Laodelphax striatellus According to RCP8.5 Climate Change Scenario (RCP8.5 기후변화 시나리오에 따른 애멸구 월동 개체군의 성충 발생시기 및 연간 세대수 변화 예측)

  • Jung, Myung-Pyo;Park, Hong-Hyun;Lee, Sang-Guei;Kim, Kwang-Ho
    • Korean journal of applied entomology
    • /
    • v.52 no.4
    • /
    • pp.427-430
    • /
    • 2013
  • Recently, climate change scenarios were substituted by the Special Report on Emission Scenarios (SRES) for Representative Concentration Pathway (RCP). Using the RCP scenario, the World Meteorological Organization (WMO) produced new climate change scenarios. Further, the National Institute of Meteorological Research (NIMR) of Korea produced new climate change scenarios for the Korean Peninsula. In this study, emergence time of small brown planthopper (SBPH), Laodelphax striatellus and the number of generations a year were estimated during climatic normal year (1981-2010) with previous studies and they were predicted during 2050s (2045-2054) and 2090s (2085-2094) by means of RCP8.5 climate change scenario. In comparison with $176.0{\pm}0.97$ Julian data in the climatic normal year, the emergence time of overwintering SBPH was predicted to be $13.2{\pm}0.18$ days ($162.8{\pm}0.91$ Julian date) earlier in 2050s and $32.1{\pm}0.61$ days ($143.9{\pm}1.08$ Julian date) earlier in 2090s. The SBPH was expected to produce an additional $2.0{\pm}0.02$ generations in 2050s and $5.2{\pm}0.06$ generations in 2090s.

Predicting the Potential Distribution of Korean Pine (Pinus koraiensis) Using an Ensemble of Climate Scenarios (앙상블 기후 시나리오 자료를 활용한 우리나라 잣나무림 분포 적지 전망)

  • Kim, Jaeuk;Jung, Huicheul;Jeon, Seong Woo;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.2
    • /
    • pp.79-88
    • /
    • 2015
  • Preparations need to be made for Korean pine(Pinus koraiensis) in anticipation of climate change because Korean pine is an endemic species of South Korea and the source of timber and pine nut. Therefore, climate change adaptation policy has been established to conduct an impact assessment on the distribution of Korean pine. Our objective was to predict the distribution of Korean pine while taking into account uncertainty and afforestation conditions. We used the 5th forest types map, a forest site map and BIOCLIM variables. The climate scenarios are RCP 4.5 and RCP 8.5 for uncertainty and the climate models are 5 regional climate models (HadGEM3RA, RegCM4, SNURCM, GRIMs, WRF). The base period for this study is 1971 to 2000. The target periods are the mid-21st century (2021-2050) and the end of the 21st century (2071-2100). This study used the MaxEnt model, and 50% of the presences were randomly set as training data. The remaining 50% were used as test data, and 10 cross-validated replicates were run. The selected variables were the annual mean temperature (Bio1), the precipitation of the wettest month (Bio13) and the precipitation of the driest month (Bio14). The test data's ROC curve of Korean pine was 0.689. The distribution of Korean pine in the mid-21st century decreased from 11.9% to 37.8% on RCP 4.5 and RCP 8.5. The area of Korean pine at an artificial plantation occupied from 32.1% to 45.4% on both RCPs. The areas at the end of the 21st century declined by 53.9% on RCP 4.5 and by 86.0% on RCP 8.5. The area of Korean pine at an artificial plantation occupied 23.8% on RCP 4.5 and 7.2% on RCP 8.5. Private forests showed more of a decrease than national forests for all subsequent periods. Our results may contribute to the establishment of climate change adaptation policies for considering various adaptation options.

Analysis of climate change impact on flow duration characteristics in the Mekong River (기후변화에 따른 메콩강 유역의 미래 유황변화 분석)

  • Lee, Daeeop;Lee, Giha;Song, Bonggeun;Lee, Seungsoo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.71-82
    • /
    • 2019
  • The purpose of this study is to analyze the Mekong River streamflow alteration due to climate change. The future climate change scenarios were produced by bias corrections of the data from East Asia RCP 4.5 and 8.5 scenarios, given by HadGEM3-RA. Then, SWAT model was used for discharge simulation of the Kratie, the main point of the Mekong River (watershed area: $646,000km^2$, 88% of the annual average flow rate of the Mekong River). As a result of the climate change analysis, the annual precipitation of the Kratie upper-watershed increase in both scenarios compared to the baseline yearly average precipitation. The monthly precipitation increase is relatively large from June to November. In particular, precipitation fluctuated greatly in the RCP 8.5 rather than RCP 4.5. Monthly average maximum and minimum temperature are predicted to be increased in both scenarios. As well as precipitation, the temperature increase in RCP 8.5 scenarios was found to be more significant than RCP 4.5. In addition, as a result of the duration curve comparison, the streamflow variation will become larger in low and high flow rate and the drought will be further intensified in the future.

Prospects of future extreme precipitation in South-North Korea shared river basin according to RCP climate change scenarios (RCP 기후변화 시나리오를 활용한 남북공유하천유역 미래 극한강수량 변화 전망)

  • Yeom, Woongsun;Park, Dong-Hyeok;Kown, Minsung;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.647-655
    • /
    • 2019
  • Although problems such as river management and flood control have occurred continuously in the Imjin and Bukhan river basin, which are shared by South and North Korea, efforts to manage the basin have not been carried out consistently due to limited cooperation. As the magnitude and frequency of hydrologic phenomena are changing due to global climate change, it is necessary to prepare countermeasures for the rainfall variation in the shared river basin area. Therefore, this study was aimed to project future changes in extreme precipitation in South-North Korea shared river basin by applying 13 Global Climate Models (GCM). Results showed that the probability rainfall compared to the reference period (1981-2005) of the shared river basin increased in the future periods of 2011-2040, 2041-2070 and 2071-2100 under the Representative Concentration Pathways (RCP)4.5 and RCP8.5 scenarios. In addition, the rainfall frequency over the 20-year return period was increased in all periods except for the future periods of 2041-2070 and 2071-2100 under the RCP4.5 scenario. The extreme precipitation in the shared river basin has increased both in magnitude and frequency, and it is expected that the region will have a significant impact from climate change.

Assessment of climate change impacts on uncertainty and sensitivity of paddy water requirement in South Korea using multi-GCMs (Multi-GCMs을 활용한 논벼 필요수량의 불확성 및 민감도 기후영향평가)

  • Yoo, Seung-Hwan;Lee, Sang-Hyun;Choi, Jin-Yong;Yoon, Kwangsik;Choi, Dongho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.516-516
    • /
    • 2016
  • 기후변화는 농업생산량 감소와 식량 안보 문제와 같이 농업에 심각한 영향을 미칠 수 있다. 또한 기존의 농업수리 및 관개배수 시설 운영에 영향을 줄 수 있다. 따라서 지속가능한 농업 수자원 관리를 위해서는 기후변화의 영향을 고려한 장기적인 계획 수립이 필요하다. 따라서 본 연구에서는 논벼 지역의 설계용수량의 확률론적 분석을 통한 논벼 필요수량 및 설계용수량에 대한 기후변화영향 평가를 실시하였다. 이를 위해서 본 연구에서는 23개 GCM의 36개 산출물을 활용하여 Multi-model ensemble 구축하였다. 먼저 GCM별 증발산량과 유효우량을 산정한 결과 중부지역에서는 IPSL-CM5A 모델의 기후변화자료를 활용할 경우 증발산량과 유효우량이 타 GCM 모델들과 비하여 크게 산정되었다. 남부지역에서는 CanESM2 모델을 적용할 경우 가장 많은 증발산량과 유효우량이 모의되는 것으로 나타났다. 이처럼 GCM별로 다양한 결과가 모의되기 때문에 농업시설 설계에 적용되는 설계용수량의 경우 안전성을 위하여 Multi-GCM models을 활용할 필요가 있다. Multi-model ensemble의 RCP 4.5와 RCP 8.5 시나리오를 적용한 결과, 모든 경우에서 1995s(1981-2014)에 비해 설계용수량은 점차적으로 증가하는 것으로 나타났다. 평균 증가율은 RCP 4.5에서 중부지역이 9.4%, 남부지역이 6.0% 증가하는 것으로 나타난 반면, RCP 8.5에서는 중부지역이 11.1%, 남부지역이 8.2% 증가하는 것으로 나타났다. 또한 여러 GCM 산출물간의 불확실성은 RCP 4.5보다는 RCP 8.5 시나리오가, 중부 지역보다는 남부 지역이, 논벼 증발산량 보다는 유효우량이 더 큰 것으로 분석되었다. 본 연구는 향후 미래 가뭄 위험성을 최소화하기 위한 농업 수자원관리 전략수립에 활용될 수 있을 것이다. 또한 본 연구결과는 기후변화 영향 평가에 있어서 적합한 GCM 자료를 선택하는데 있어, 불확실성을 가늠할 수 있는 유용한 척도로 이용될 수 있을 것으로 기대된다.

  • PDF