DOI QR코드

DOI QR Code

Prediction of Adult Emergence Time and Generation Number of Overwintered Small Brown Planthopper, Laodelphax striatellus According to RCP8.5 Climate Change Scenario

RCP8.5 기후변화 시나리오에 따른 애멸구 월동 개체군의 성충 발생시기 및 연간 세대수 변화 예측

  • Jung, Myung-Pyo (Climate change & Agroecology Division, National Academy of Agricultural Science) ;
  • Park, Hong-Hyun (Crop Protection Division, National Academy of Agricultural Science) ;
  • Lee, Sang-Guei (Crop Protection Division, National Academy of Agricultural Science) ;
  • Kim, Kwang-Ho (Crop Protection Division, National Academy of Agricultural Science)
  • 정명표 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 박홍현 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 이상계 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 김광호 (국립농업과학원 농산물안전성부 작물보호과)
  • Received : 2013.11.13
  • Accepted : 2013.11.20
  • Published : 2013.12.01

Abstract

Recently, climate change scenarios were substituted by the Special Report on Emission Scenarios (SRES) for Representative Concentration Pathway (RCP). Using the RCP scenario, the World Meteorological Organization (WMO) produced new climate change scenarios. Further, the National Institute of Meteorological Research (NIMR) of Korea produced new climate change scenarios for the Korean Peninsula. In this study, emergence time of small brown planthopper (SBPH), Laodelphax striatellus and the number of generations a year were estimated during climatic normal year (1981-2010) with previous studies and they were predicted during 2050s (2045-2054) and 2090s (2085-2094) by means of RCP8.5 climate change scenario. In comparison with $176.0{\pm}0.97$ Julian data in the climatic normal year, the emergence time of overwintering SBPH was predicted to be $13.2{\pm}0.18$ days ($162.8{\pm}0.91$ Julian date) earlier in 2050s and $32.1{\pm}0.61$ days ($143.9{\pm}1.08$ Julian date) earlier in 2090s. The SBPH was expected to produce an additional $2.0{\pm}0.02$ generations in 2050s and $5.2{\pm}0.06$ generations in 2090s.

최근 WMO는 온실가스 배출량 시나리오(SRES)를 대신하여 대표농도경로(RCP)를 바탕으로 새로운 기후변화 시나리오를 생산하였으며 기상연구소는 RCP 시나리오를 바탕으로 한반도의 새로운 기후변화 시나리오를 생산하였다. 본 연구에서는 과거 관측값을 바탕으로 평년(1981-2010)의 애멸구의 우화시기와 세대수를 추정하였으며, RCP 8.5 시나리오를 바탕으로 2020년대(2015-2024), 2050년대(2045-2054)와 2090년대(2085-2094) 애멸구의 우화시기와 세대수를 예측하였다. 평년 애멸구 월동 1세대수의 우화일인 $176.0{\pm}0.97$일과 비교하여 2050년대에서는 $13.2{\pm}0.18$일($162.8{\pm}0.91$일), 2090년대에는 $32.1{\pm}0.61$일($143.9{\pm}1.08$일) 앞당겨질 것을 예측되었다. 그리고 애멸구의 연간 세대수는 2050년대에서는 현재보다 $2.0{\pm}0.02$세대, 2090년대에는 $5.2{\pm}0.06$세대 증가할 것으로 예측되었다.

Keywords

References

  1. Bae, S.D., Song, Y.H., Park, K.B., 1995. Study on the bionomics of overwintering small brown planthopper, Laodelphax striatellus Fallen, in Milyang. Korean J. Appl. Entomol. 34, 321-327 (in Korean with English abstract).
  2. Chon, T.S., Hyun, J.S., Park, C.S., 1975. A study on the population dynamics of overwintered small brown planthopper, Laodelphax striatellus (Fallen). Korean J. Entomol. 5, 21-32 (in Korean with English abstract).
  3. Chung, B.J., 1974. Studies on the occurrence, host range, transmission, and control of rice stripe disease in Korea. Korean J. Plant Protec. 181-204 (in Korean with English abstract).
  4. Collier, R. H., Finch, S., Phelps, K., Thompson, A.R., 1991. Possible impact of global warming on cabbage root fly (Delia radicum) activity in the UK. Ann. Appl. Biol.118, 261-271. https://doi.org/10.1111/j.1744-7348.1991.tb05627.x
  5. Forister, M.L, Shapiro, A.M., 2003. Climatic trends and advancing spring flight of butterflies in lowland California. Global Change Biol. 9, 1130-1135. https://doi.org/10.1046/j.1365-2486.2003.00643.x
  6. Herms, D.A., 2004. Using degree-days and plant phenology to predict pest activity, in: Krischik,V., Davidson, J. (Eds.), IPM (Integrated Pest Management) of Midwest Landscapes. Minnesota Agricultural Experiment Station Publication, Minnesota, pp. 49-59.
  7. Hyun, J.S., Woo, K.S., Ryoo, M.I., 1977. Studies on the seasonal increase of the population of the smaller brown planthopper, Laodelphax striatellus (Fallen). Korean J. Plant Protec. 16, 13-19 (in Korean with English abstract).
  8. Kim, D.S., Lee, J.-H., 2005. The effects of elevated temperatures on the population dynamics of Carposina sasakii (Lepidoptera: Carposinidae): a simulation study. 2005 Proceedings of The Korean Society of Agricultural and Forest Meteorology, The Korean Society of Agricultural and Forest Meteorology, 63-66.
  9. Kim, K.-H., 2009. Study on change in 50% light trap catch dates for the 1st generation of the Small Brown Planthopper, Laodelphax striatellus Fallen In Korea. A thesis for the degree of doctor of philosophy. Seoul National University (in Korean with English abstract).
  10. Kiritani, K., 2006. Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popul. Ecol. 48, 5-12. https://doi.org/10.1007/s10144-005-0225-0
  11. NIMR (National Institute of Meteorological Research), 2011: Report on climate change scenarios for IPCC AR5, National Institute of Meteorological Research.
  12. Park, C.-G., Park, H.-H., Kim, K.-H., 2011. Temperature-dependent Development Model and Forecasting of Adult Emergence of Overwintered Small Brown Planthopper, Laodelphax striatellus Fallen, Population. Korean J. Appl. Entomol. 50, 343-352 (in Korean with English abstract). https://doi.org/10.5656/KSAE.2011.50.4.343
  13. Parmesan, C., 2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biol. 13, 1860-1872. https://doi.org/10.1111/j.1365-2486.2007.01404.x
  14. Pedigo, L.P., 2002. Entomology and pest management (4th ed.). Prentice Hall, 742pp.
  15. Suenaga, H., 1963. Analytical studies on the ecology of two species of planthoppers, the whitebacked planthopper ( Sogata furcifera Horvath) and the brown planthopper ( Nilaparvata lugens Stal.), with special reference to their outbreaks [in Japanese, English summary]. Bull. Kyushu Agric Exp. Stn. 8:1-152.
  16. Sparks, T.H., Yates, T.J., 1997. The effect of spring temperature on the appearance dates of British butterflies 1883-1993. Ecography 20, 368-374. https://doi.org/10.1111/j.1600-0587.1997.tb00381.x
  17. Stefanescu, C., Penuelas, J., Filella, I., 2003. Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Global Change Biol. 9, 1494-1506. https://doi.org/10.1046/j.1365-2486.2003.00682.x
  18. Stinner, R.E., Gutierrez, A.P., Butler Jr., G.D., 1974. An algorithm for temperature-dependent growth rate simulation. Can. Entomol. 106, 519-524. https://doi.org/10.4039/Ent106519-5
  19. Trnka, M., Muška, F., Semeradovaa, D., Dunrovsky, M., Kocmankova, E., Zalud, Z., 2007. European corn borer life stage model: Regional estimates of pest development and spatial distribution under present and future climate. Ecol. Model. 207, 61-84. https://doi.org/10.1016/j.ecolmodel.2007.04.014
  20. Yamamura, K., Kiritani, K., 1998. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomol. Zool. 33, 289-298.

Cited by

  1. Impact of Climate Change on Yield Loss Caused by Bacterial Canker on Kiwifruit in Korea vol.18, pp.2, 2016, https://doi.org/10.5532/KJAFM.2016.18.2.65
  2. Differential Susceptibility to High Temperature and Variation of Seasonal Occurrence between Spodoptera exigua and Plutella xylostella 2016, https://doi.org/10.5656/KSAE.2016.01.1.074
  3. Screening Technique of Effective Insecticides against the Striped Fruit Fly, Bactrocera scutellata vol.22, pp.1, 2018, https://doi.org/10.7585/kjps.2018.22.1.29