• Title/Summary/Keyword: RC-T girder bridge

Search Result 9, Processing Time 0.035 seconds

A Study on Strengthening of R/C T Girder Bridge using Standardized Strengthening Technique with Fiber Plastic(I) (표준화된 섬유보강공법을 적용한 RC T형 교량의 성능향상연구(I))

  • 심종성;오홍섭;임채옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.545-548
    • /
    • 1999
  • The purpose of this study is application of strengthening technique of R/C concrete bridge by standardization of repair and rehabilitation. For that, experiment to bridge is necessary, and through the experiment, this study can identify the efficiency o applied method and analysis of design parameters with can't get in the laboratory experiment. This study will prove the structural behavior of R/C type girder bridge which is deteriorated but repaired and rehabilitation from standardized strengthening method with fiber plastic.

  • PDF

Durability Evaluation and Defect Pattern Analysis in Railway Bridge Through Field Investigation (현장조사를 통한 철도 고가교 구조물의 내구성 평가 및 결함 패턴 분석)

  • Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.10-20
    • /
    • 2013
  • Because of the defect in design, damage in using period, and deterioration in long term exposure to severe environmental condition, degradation of performance in RC (Reinforced Concrete) structures has occurred. This paper contains durability performance evaluation in railway bridges which covers eight districts through field investigation. For the target structures, durability performance is evaluated and the critical problems in use are derived. Additionally, service lifes for the deteriorated structures are evaluated through Durability-Environment index method based on the results from field investigation, and the results are compared with those from the condition assuming the structures without defect, damage, and deterioration. The target structures which consist of RC T girder, PSC girder, RC box, and Rahmen are investigated and the critical damage patterns are derived. They are evaluated to be cracks in PSC girder end, flexural cracks in PSC girder, crack around EPT anchor, and flexural cracks in RC T girder and RC box. The reasons for the critical patterns are also investigated. This study can be utilized for the repair planning considering the different district and the structure types.

A Study on the Load Carrying Capacity of the RC-T Bridge considering depth of crack (RC-T 교량의 균열을 고려한 내하력평가 연구)

  • Shim, Jae-Soo;Kim, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.141-146
    • /
    • 1999
  • Recently, many existing bridges has been evaluated for maintenance and protection of collapse. In this study, field measurement according to truck loads tests on the reinforce concrete T beam bridge was carried out. Comparing the results of load test and structural analysis using the moments of inertia of gross section, crack section and effective section, and the moments of inertia of section considering depth of crack, it is conclude that the evaluation of load carrying capacity using the stress modification factor from structural analysis using the moments of inertia of gross section is more rational than using the other moments of inertia of sections.

  • PDF

A Study on the Method of Load Distribution for Nonlinear Behaviour in RC-T Bridge (RC-T형교의 비선형거동해석을 위한 하중분배법에 관한 연구)

  • Im, Jung-Soon;Kim, Sung-SunChil;Park, Sung-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.1
    • /
    • pp.129-135
    • /
    • 1998
  • The characteristic of load-distribution is investigated by using nonlinear analysis with a field loading test of existing bridge In this study, nonlinear load-distribution technique for quantitative analysis was adopted. The results were compared with linear solution technique with data from failure test at existing RCT-girder bridge and examine the adequacy of the failure mode. The results of this study showed that the linear solution technique and the proposed nonlinear solution technique agreed well in linear region but did not matched well in nonlinear region because of load-redistribution, and that the effect of load-redistribution was considered to analysis of nonlinear region by linear solution.

  • PDF

Simplified Bridge Weigh-In-Motion Algorithm using Strain Response of Short Span RC T-beam Bridge with no Crossbeam installed (가로보가 없는 단지간 RC T빔교의 변형률 응답을 이용한 단순화된 BWIM (Bridge Weigh-In-Motion) 알고리즘)

  • Jeon, Jun-Chang;Hwang, Yoon Koog;Lee, Hee-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.57-67
    • /
    • 2021
  • A thorough administration of the arterial road network requires a continuous supply of updated and accurate information about the traffic that travels on the roads. One of the ways to effectively obtain the traffic volume and weight distribution of heavy vehicles is the BWIM technique, which is actively being studied. Unlike previous studies, this study was performed to develop a simplified Bridge Weigh-In-Motion (BWIM) algorithm that can easily estimate the axle spacing and weight of a traveling vehicle by utilizing the structural characteristics of the bridge. A short span RC T-beam bridge with no crossbeam installed was selected for the study, and then the strain response characteristics of bridge deck and girder was checked through preliminary field test. Based on the preliminary field test results, a simplified BWIM algorithm suitable for the bridge to be studied was derived. The validity and accuracy of the BWIM algorithm derived in this study were verified through field test. As a result of the verification test, the proposed BWIM algorithm can estimate the axle spacing and gross weight of the travelling vehicles with the average percent error of less than 3%.

Experimental investigations on seismic responses of RC circular column piers in curved bridges

  • Jiao, Chiyu;Li, Jianzhong;Wei, Biao;Long, Peiheng;Xu, Yan
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.435-445
    • /
    • 2019
  • The collapses of curved bridges are mainly caused by the damaged columns, subjected to the combined loadings of axial load, shear force, flexural moment and torsional moment, under earthquakes. However, these combined loadings have not been fully investigated. This paper firstly investigated the mechanical characteristics of the bending-torsion coupling effects, based on the seismic response spectrum analysis of 24 curved bridge models. And then 9 reinforced concrete (RC) and circular column specimens were tested, by changing the bending-tortion ratio (M/T), axial compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratio, respectively. The results show that the bending-torsion coupling effects of piers are more significant, along with the decrease of girder curvature and the increase of pier height. The M/T ratio ranges from 6 to 15 for common cases, and influences the crack distribution, plastic zone and hysteretic curve of piers. And these seismic characteristics are also influenced by the compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratios of piers.

Safety Assessment of RC Pier Coping According to Modification of Rebar Arrangement (RC교각 코핑부 배근방법에 따른 안전성 평가)

  • Park, Bong-Sik;Park, Sung-Hyun;Shin, Wang-Su;Cho, Jae-Yeol
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1519-1525
    • /
    • 2011
  • Construction of the coping of reinforced concrete piers is very complicated due to heavy density of rebars and usually exposed to negligent accident. To correct these problems, coping is pre-assembled at the ground in pier coping pre-assembly method and recently a new method of rebar assembling has proposed in this study. For safety assessment of proposed method, small scale model test of railway bridge(PSC U-GIRDER T-shaped pier) was carried out and it was verified that crack pattern, failure mechanism and load resistance capacity are similar between existing method and proposed method. And using analytical approach, linear and non-linear finite element analysis was performed. As a result, it was checked that proposed method has an acceptable structural safety.

  • PDF

A Methodology for Monitoring Prestressed Force of Bridges Using OFS-embedded Strand (광섬유센서가 내장된 강연선을 이용한 교량의 장력 모니터링 방법)

  • Kim, Hyoun-Wo;Kim, Jae-Min;Kim, Jin-Won;Kim, Young-Sang;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.133-138
    • /
    • 2008
  • This study proposes a novel method for in-service evaluation of force in an external prestressing 7-wire tendon which is employed for retrofitting bridge superstructure. For this propose, a smart strand 7.0m long whose king wire is replaced by a steel tube and the FBG sensor, is developed. Performance of the strand is demonstrated through loading-unloading tests for a RC T-shaped beam 6.4m long. Finally, a couple of test results are presented to discuss effect of temperature change in the FBG sensor.

  • PDF

A Methodology for Monitoring Prestressed Force of Bridges Using OFS-embedded Stand (광섬유센서가 내장된 강연선을 이용한 교량의 장력 모니터링 방법)

  • Kim, Jae-Min;Kim, Hyun-Woo;Kim, Young-Sang;Kim, Jin-Won;Yun, Chung-Bang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.287-294
    • /
    • 2008
  • This study proposes a novel method for in service evaluation of tension force of a prestressed 7-wire strand which is frequently employed for retrofitting bridge superstructure. The smart strand is made by replacing the straight king wire of the strand with an instrumented steel tube in which the FBG sensor is embedded. Since the strain of the smart strand can easily be measured using the sensor, it is possible to monitor tension force of the strand during the service. For the sake of demonstrating effectiveness of the proposed strand, we came up with a 7.0m long prototype with 2 FBG sensors, and it is applied as an external tendon to a 6.4m long and 0.6 high RC T-shaped beam. A loading-unloading test has been carried out, and estimated tension forces using the smart strand are compared with measured forces by load cell. The comparison showed that the proposed smart tendon is useful and accurate for monitering tension force of the prestressed tendon.