DOI QR코드

DOI QR Code

가로보가 없는 단지간 RC T빔교의 변형률 응답을 이용한 단순화된 BWIM (Bridge Weigh-In-Motion) 알고리즘

Simplified Bridge Weigh-In-Motion Algorithm using Strain Response of Short Span RC T-beam Bridge with no Crossbeam installed

  • 투고 : 2021.02.23
  • 심사 : 2021.04.19
  • 발행 : 2021.06.30

초록

간선도로망을 효율적으로 관리하기 위해서는 도로를 통행하는 교통에 대한 최신의 정확한 정보가 지속적으로 제공되어야 한다. 중차량의 교통량 및 중량 분포를 효과적으로 얻는 방법 중의 하나가 BWIM 기법이며, 이에 대한 연구가 활발히 진행되고 있다. 이 연구는 기존 연구와 달리 교량의 구조적 특성을 활용하여 간편하게 주행차량의 축간거리 및 중량을 추정할 수 있는 단순화된 BWIM(Bridge Weigh-In-Motion) 알고리즘을 개발하기 위해 수행되었다. 가로보가 설치되지 않은 단지간의 RC-T빔교를 연구대상으로 선정하고, 예비현장 실험을 통해 바닥판 및 주거더의 변형률 응답 특성을 확인하였다. 예비현장실험결과에 기초하여 연구대상 교량에 적합한 단순화된 BWIM 알고리즘을 도출하였다. 이 연구를 통해 도출된 BWIM 알고리즘의 타탕성 및 정확성을 현장실험을 통해 검증하였다. 검증실험 결과, 제안된 BWIM 알고리즘은 주행차량의 축간거리 및 총 중량을 3% 미만의 평균 오차를 가지고 추정하는 결과를 나타내었다.

A thorough administration of the arterial road network requires a continuous supply of updated and accurate information about the traffic that travels on the roads. One of the ways to effectively obtain the traffic volume and weight distribution of heavy vehicles is the BWIM technique, which is actively being studied. Unlike previous studies, this study was performed to develop a simplified Bridge Weigh-In-Motion (BWIM) algorithm that can easily estimate the axle spacing and weight of a traveling vehicle by utilizing the structural characteristics of the bridge. A short span RC T-beam bridge with no crossbeam installed was selected for the study, and then the strain response characteristics of bridge deck and girder was checked through preliminary field test. Based on the preliminary field test results, a simplified BWIM algorithm suitable for the bridge to be studied was derived. The validity and accuracy of the BWIM algorithm derived in this study were verified through field test. As a result of the verification test, the proposed BWIM algorithm can estimate the axle spacing and gross weight of the travelling vehicles with the average percent error of less than 3%.

키워드

참고문헌

  1. Ministry of Land, Infrastructure and Transport. (2020), Yearbook of Road Bridge and Tunnel Statistics.
  2. O'Brien, E. J., Znidaric, A., and Dempsey, A. T. (1999), Comparison of Two Independently Developed Bridge Weigh-In-Motion Systems, International Journal of Vehicle Design, 6, 147-160.
  3. Christenson, R. E., and Motaref, S. (2016), Dual Purpose Bridge Health Monitoring and Weigh-In-Motion (BWIM) System, Report Number CT-2265-F-15-7, Connecticut Department of Transportation.
  4. Moses, F. (1979), Weigh-In-Motion System Using Instrumented Bridges, Transportation Engineering Journal of ASCE, 105(3), 233-249. https://doi.org/10.1061/TPEJAN.0000783
  5. O'Brien, E. J., Quilligan, M., and Karoumi, R. (2006), Calculating an Influence Line from Direct Measurements, Proceedings of the ICE:Bridge Engineering, 159(1), 31-34.
  6. Yamaguchi, E., Kawamura, S., Matuso, K., Matsuki, Y., and Naito, Y. (2009), Bridge-Weigh-in-Motion by Two-span Continuous Bridge with Skew and Heavy-truck Flow in Fukuoka Area, Japan, Advances in Structural Engineering, 12(1), 115-125. https://doi.org/10.1260/136943309787522614
  7. Ieng, S. (2015), Bridge Influence Line Estimation for Bridge Weigh-In-Motion System, Journal of Computing in Civil Engineering, 29(1), 06014006. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000384
  8. Kim, S., Lee, S., Park, M., and Jo, B. (2009), Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Eeigh-In-Motion System, Sensors, 9(10), 7943-7956. https://doi.org/10.3390/s91007943
  9. O'Connor, C., and Chan, T. H. (1988), Dynamic Wheel Loads from Bridge Strains, Journal of Structural Engineering, ASCE, 114(8), 1703-1723. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1703)
  10. Wu, S., and Law, S. S. (2010), Moving Force Identification Based on Stochastic Finite Element Model, Engineering Structures, 32(4), 1016-1027. https://doi.org/10.1016/j.engstruct.2009.12.028
  11. Deng, L., and Cai, C. S. (2011), Identification of Dynamic Vehicular Axle Loads: Demonstration by a Field Study, Journal of Vibration and Control, 17(2), 183-195. https://doi.org/10.1177/1077546309351222
  12. Lydon, M., Taylor, S., Robinson, D., Callender, P., Doherty, C., Grattan S. K. T., and O'Brien, E. J. (2014), Development of a Bridge Weigh-In-Motion Sensor: Performance Comparison Using Fiber Optic and Electric Resistance Strain Sensor Systems, IEEE Sensors Journal, 14(12), 4284-4296. https://doi.org/10.1109/JSEN.2014.2332874