• Title/Summary/Keyword: RC-S 접합부

Search Result 23, Processing Time 0.02 seconds

Inelastic Behavior of Beam-Column Joints Composed of RC Column and RS Beams (RC 기둥과 RS 보로 이루어진 보-기둥 접합부의 비탄성 거동)

  • 김욱종;윤성환;문정호;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.734-741
    • /
    • 2002
  • An experimental study was carried out for beam-column joints composed of RC column and RS beams. The purpose of this study is to examine the inelastic seismic behavior for the RC-RS connection. Two interior and one exterior beam-column assemblies with variable moment ratios were tested. Experimental results showed that strength and deformability except stiffness were satisfactory. It is considered that the lack of stiffness was due to the slipping of steel beam from RS beam. The behavioral characteristics of the RC-RS connection were evaluated according to the quideline suggested by Hawkins et al. Nominal strength at 5 % joint distortion was not satisfactory, but all the other requirements, such as strength preserving capability, energy dissipation, and initial stiffness and strength ratios after peak load were satisfactory compared with the guideline. Thus it was concluded that the RC-RS connections can maintain ductility with excellent energy-dissipating capacity if being provided with appropriate reinforced structural system such as RC core wall for the initial lateral stiffness.

Pushover Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 푸쉬오버해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.517-524
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint and the vertical distribution of lateral load are evaluated considering higher modes on the response of RC OMRF using the pushover analysis. A structure used for the analysis was a 5-story structure located at site class SB and seismic design category C, which was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was identified using fiber model. Also, bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship for the joint. The results of pushover analysis showed that, although the rigid beam-column joint overestimated the stiffness and strength of the structure, the inelastic shear behavior of beam-column joint could be neglected in the process of structural design since the average response modification factor satisfied the criteria of KBC2009 for RC OMRF independent to inelastic behavior of joint.

A Study on the Fatigue Behavior of RC Slabs of Widened Bridges (확폭교량 RC 상판의 피로거동에 관한 연구)

  • 홍순길;장동일
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.143-150
    • /
    • 1994
  • Most widened bridges have been constructed by the joining-construction method that makes new and existmg bridges structurally a single structure. Since the joining-constructiori method has several problems in design and construction viewpoint, this study is conducted in order to investigate the flexural fatigue behavior of RC slabs, which are widened and influenced by traffic-induced vibration of existmg bridge during placing and curing of new concrete, with the prototype fatigue test. It was found that stress concentration at the jclmts anti slips between steel bar and concrete are occured. Hut, the general tx:havinrs are similar to the original state and joining-construction method using expansive concrete nut~gated the influence of the trafflc-induced vibration.

Cyclic Lond Testing for Strong Axis Joints Connected with SRC Column and RC Beams (SRC기둥-RC보 강축 접합부 상세의 구조성능 평가)

  • Moon, Jeong-Ho;Lee, Kang-Min;Lim, Jae-Hyung;Oh, Kyung-Hwan;Kim, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.401-409
    • /
    • 2007
  • The objective of this research is to provide better knowledge on the behavior of strong axis SRC column-RC beam joint, supported by experimental results, that can be broadly applicable to many structures. For this purpose, firstly literature reviews and field survey were made to classify the most commonly used for these types of joints. Then, experimental program was designed and performed including 6 SRC column-RC beam joint specimens designed with various joint details. Using the experimental results obtained from the quasi-static cyclic tests, structural performances of the joints such as hysteretic curves, maximum strength capacities, strength degradation beyond the maximum strength, ductilities, and energy dissipation capacities were investigated. Test results showed that specimens with wide beam shape (RCW-P, RCW-W, RCW-F) and T beam shape (RCT-W) showed better structural performances than the bracket type specimens (HBR-L, HBR-S). These specimens also revealed to have higher strength capacities than the nominal design strength. However, H beam bracket type specimens (HBR-L, HBR-S) need further study both analytically and experimentally to verify the reason for unexpected structural performances.

Shear Strength of Hybrid Steel Beam with Reinforced Concrete Ends (단부 RC조와 중앙부 철골조로 이루어진 혼합구조 보의 전단내력에 관한 실험적 연구)

  • 김욱종;최종권;문정호;이리형;이동렬
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.457-462
    • /
    • 1998
  • An experimental study was carried out for hybrid steel beams with reinforced concrete ends. The purpose is to examine the shear strength and to develop the design methodology of the RC-S connection region. Tested were four beams which included a reference beam and three beams with various parameters. The reference beam was used to make a comparison with remaining specimens. The test parameters were focused mostly on the concentrated shear reinforcements. The ratio of concentrated shear reinforcements and their types were investigated in this study.

  • PDF

Seismic Performance Assessment of Roof-Level Joints with Steel Fiber-Reinforced High-Strength Concrete (강섬유보강 고강도콘크리트를 적용한 최상층 접합부의 내진성능 평가)

  • Kim, Sang-Hee;Kwon, Byung-Un;Kang, Thomas H.-K.
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.235-244
    • /
    • 2016
  • This study was conducted to verify seismic performance of special moment frame's joints at roof-level with high-strength concrete and SD600 bars. K-RC-H was designed according to the seismic code and K-HPFRC-H had 150% of the original hoop spacing and 1.0% steel fiber volume fraction compared with K-RC-H. Both specimens had remarkable seismic performance without noticeable decrease in moment, but with very good energy dissipation before rebar failure. The U-bars in the joint sufficiently constrained rebar's action that pushed the cover upward. SD600 bars with $1.25l_{dt}$ had minimum slip in the joint. It was considered that the steel fiber contributed to improvement of the bending moment and joint shear distortion, and the result showed that it would be possible to increase the hoop spacing to 150% of the regular spacing.

Behavior and Strength of Wall-Slab Connection in SC Structure (SC구조 벽-바닥 접합부의 내력 및 거동 특성)

  • Kim, Hyeong Gook;Kim, Woo Bum;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.347-354
    • /
    • 2008
  • Steel plate-concrete (SC) structure has recently been used in nuclear power structure because of its construction efficiency. In this study, experimental and analytical study to investigate the behavior of the SC structure's wall slab connection was carried out. Experiments were performed for typical SC and RC connections in order to examine the basic difference between each structure. Finite element analysis was performed and the result of the analysis was found to closely reflect the experimental result. By varying the thickness of the shear plate and friction coefficients and the distance of applied load from the wall, the influence of the parameters on the joint strength and failure modes were examined. Finally, it was confirmed that the joint strength formula proposed in th this research gives conservative results.

Strength Experimental Study on Precast Column-R.C. Foundation Anchor Joint Subjected to Cyclic Horizontal Loading (반복-수평력을 받는 프리캐스트기둥- RC기초 Anchor 접합부의 내력 실험 연구)

  • Lee, Ho;Jung, Hwoan-Mok;Cha, Byung-Gi;Byun, Sang-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.2
    • /
    • pp.45-52
    • /
    • 2009
  • This paper experimentally evaluates the strength characteristics of precast column-R.C. foundation anchor joint subjected to the cyclic horizontal load. The study presents differences in accurate stress transfer path and destruction mechanism between the concrete structural body applying the precast column-R.C. foundation anchor joint and the concrete structural body applying the steel joint. the result from width load experiment on reinforcing steel under the cyclic horizontal load provides the necessary minimum insertion length to construct the precast column-R.C. foundation anchor joint. This study also presents the accurate stress transfer path and destruction mechanism on the anchor joint th meet the customer's requirements, comparing stress transfer path and destruction mechanism provided by the experiment and those provided by the product manual. Eventually, this study presents all the necessary fundamental data to provide the construction design with accurate number of reinforcing steel, diameter of the steel, fixation length of the steel, etc. to build the optimum precast concrete column.

  • PDF

Inelastic Time History Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.633-641
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint on the response of RC OMRF are evaluated in the inelastic time history analysis. For an example, a 5-story structure for site class SB and seismic design category C was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was evaluated using fiber model and bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship. The hysteretic behavior was simulated using three-parameter model suggested in IDARC program. The inelastic time history analysis with PGA for return period of 2400 years showed that the model with inelastic beam-column joint yielded smaller maximum base shear force but nearly equivalent maximum roof displacement and maximum story drift as those obtained from analysis using rigid joint. The maximum story drift satisfied the criteria of KBC2009. Therefore, the inelastic shear behavior of beam-column joint could be neglected in the structural design.

The Analytical Study on the Structural Performance of Beam-Column Connections of RC Column and Steel Beam (철근 콘크리트 기둥과 철골 보 접합부의 거동 평가틀 위한 해석적 연구)

  • Hong, Seong-Heon;Han, Sang-Whan;Ryu, Cheon;Lee, Li-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.110-116
    • /
    • 1998
  • The three-dimensional nonlinear analysis on the partial tension experiment of Beam-Column connections in hybrid connections with RC columns and S beams is simulated. In this paper, mechanical characteristics between steel plates and concrete is investigated. Also the stress transfer mechanism prior to beam-column connection analysis was considered by using joint element.

  • PDF