• Title/Summary/Keyword: RBF (Radial-Basis Function)

Search Result 244, Processing Time 0.032 seconds

Implementation of Text-to-Audio Visual Speech Synthesis Using Key Frames of Face Images (키프레임 얼굴영상을 이용한 시청각음성합성 시스템 구현)

  • Kim MyoungGon;Kim JinYoung;Baek SeongJoon
    • MALSORI
    • /
    • no.43
    • /
    • pp.73-88
    • /
    • 2002
  • In this paper, for natural facial synthesis, lip-synch algorithm based on key-frame method using RBF(radial bases function) is presented. For lips synthesizing, we make viseme range parameters from phoneme and its duration information that come out from the text-to-speech(TTS) system. And we extract viseme information from Av DB that coincides in each phoneme. We apply dominance function to reflect coarticulation phenomenon, and apply bilinear interpolation to reduce calculation time. At the next time lip-synch is performed by playing the synthesized images obtained by interpolation between each phonemes and the speech sound of TTS.

  • PDF

Use of Support Vector Regression in Stable Trajectory Generation for Walking Humanoid Robots

  • Kim, Dong-Won;Seo, Sam-Jun;De Silva, Clarence W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.565-575
    • /
    • 2009
  • This paper concerns the use of support vector regression (SVR), which is based on the kernel method for learning from examples, in identification of walking robots. To handle complex dynamics in humanoid robot and realize stable walking, this paper develops and implements two types of reference natural motions for a humanoid, namely, walking trajectories on a flat floor and on an ascending slope. Next, SVR is applied to model stable walking motions by considering these actual motions. Three kinds of kernels, namely, linear, polynomial, and radial basis function (RBF), are considered, and the results from these kernels are compared and evaluated. The results show that the SVR approach works well, and SVR with the RBF kernel function provides the best performance. Plus, it can be effectively applied to model and control a practical biped walking robot.

Predicting Atmospheric Concentrations of Benzene in the Southeast of Tehran using Artificial Neural Network

  • Asadollahfardi, Gholamreza;Mehdinejad, Mahdi;Mirmohammadi, Mohsen;Asadollahfardi, Rashin
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.12-21
    • /
    • 2015
  • Air pollution is a challenging issue in some of the large cities in developing countries. In this regard, data interpretation is one of the most important parts of air quality management. Several methods exist to analyze air quality; among these, we applied the Multilayer Perceptron (MLP) and Radial Basis Function (RBF) methods to predict the hourly air concentration of benzene in 14 districts in the municipality of Tehran. Input data were hourly temperature, wind speed and relative humidity. Both methods determined reliable results. However, the RBF neural network performance was much closer to observed benzene data than the MLP neural network. The correlation determination resulted in 0.868 for MLP and 0.907 for RBF, while the Index of Agreement (IA) was 0.889 for MLP and 0.937 for RBF. The sensitivity analysis related to the MLP neural network indicated that the temperature had the greatest effect on prediction of benzene in comparison with the wind speed and humidity in the study area. The temperature was the most significant factor in benzene production because benzene is a volatile liquid.

A Study on I-PID-Based 2-DOF Snake Robot Head Control Scheme Using RBF Neural Network and Robust Term (RBF 신경망과 강인 항을 적용한 I-PID 기반 2 자유도 뱀 로봇 머리 제어에 관한 연구)

  • Sung-Jae Kim;Jin-Ho Suh
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.139-148
    • /
    • 2024
  • In this paper, we propose a two-degree-of-freedom snake robot head system and an I-PID (Intelligent Proportional-Integral-Derivative)-based controller utilizing RBF (Radial Basis Function) neural network and adaptive robust terms as a control strategy to reduce rotation occurring in the snake robot head. This study proposes a two-degree-of-freedom snake robot head system to avoid complex snake robot dynamics. This system has a control system independent of the snake robot. Subsequently, it utilizes an I-PID controller to implement a control system that can effectively manage rotation at the snake robot head, the robot's nonlinearity, and disturbances. To compensate for the time delay estimation errors occurring in the I-PID control system, an RBF neural network is integrated. Additionally, an adaptive robust term is designed and integrated into the control system to enhance robustness and generate control inputs responsive to signal changes. The proposed controller satisfies stability according to Lyapunov's theory. The proposed control strategy was tested using a 9-degreeof-freedom snake robot. It demonstrates the capability to reduce rotation in Lateral undulation, Rectilinear, and Sidewinding locomotion.

Performance Improvement on Fuzzy C-Means Algorithm for Nonlinear Blind Channel Equalization (비선형 블라인드 채널등화를 위한 퍼지 클러스터 알고리즘의 성능개선)

  • Park, Seong-Dae;Han, Su-Hwan
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.382-388
    • /
    • 2007
  • In this paper, a modified Fuzzy C-Means (MFCM) algorithm is presented for nonlinear blind channel equalization. The proposed MFCM searches the optimal channel output states of a nonlinear channel from the received symbols, based on the Bayesian likelihood fitness function instead of a conventional Euclidean distance measure. Next, the desired channel states of a nonlinear channel are constructed with the elements of estimated channel output states, and placed at the center of a Radial Basis Function (RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with that of a hybrid genetic algorithm (GA merged with simulated annealing (SA): GASA), and the relatively high accuracy and fast searching speed are achieved.

  • PDF

Target Classification Algorithm Using Complex-valued Support Vector Machine (복소수 SVM을 이용한 목표물 식별 알고리즘)

  • Kang, Youn Joung;Lee, Jaeil;Bae, Jinho;Lee, Chong Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.182-188
    • /
    • 2013
  • In this paper, we propose a complex-valued support vector machine (SVM) classifier which process the complex valued signal measured by pulse doppler radar (PDR) to identify moving targets from the background. SVM is widely applied in the field of pattern recognition, but features which used to classify are almost real valued data. Proposed complex-valued SVM can classify the moving target using real valued data, imaginary valued data, and cross-information data. To design complex-valued SVM, we consider slack variables of real and complex axis, and use the KKT (Karush-Kuhn-Tucker) conditions for complex data. Also we apply radial basis function (RBF) as a kernel function which use a distance of complex values. To evaluate the performance of the complex-valued SVM, complex valued data from PDR were classified using real-valued SVM and complex-valued SVM. The proposed complex-valued SVM classification was improved compared to real-valued SVM for dog and human, respectively 8%, 10%, have been improved.

Architectural Analysis of Type-2 Interval pRBF Neural Networks Using Space Search Evolutionary Algorithm (공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Lee, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • In this paper, we proposed Interval Type-2 polynomial Radial Basis Function Neural Networks. In the receptive filed of hidden layer, Interval Type-2 fuzzy set is used. The characteristic of Interval Type-2 fuzzy set has Footprint Of Uncertainly(FOU), which denotes a certain level of robustness in the presence of un-known information when compared with the type-1 fuzzy set. In order to improve the performance of proposed model, we used the linear polynomial function as connection weight of network. The parameters such as center values of receptive field, constant deviation, and connection weight between hidden layer and output layer are optimized by Conjugate Gradient Method(CGM) and Space Search Evolutionary Algorithm(SSEA). The proposed model is applied to gas furnace dataset and its result are compared with those reported in the previous studies.

RBF Neural Network Based SLM Peak-to-Average Power Ratio Reduction in OFDM Systems

  • Sohn, In-Soo
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.402-404
    • /
    • 2007
  • One of the major disadvantages of the orthogonal frequency division multiplexing system is high peak-to-average power ratio (PAPR). Selected mapping (SLM) is an efficient distortionless PAPR reduction scheme which selects the minimum PAPR sequence from a group of independent phase rotated sequences. However, the SLM requires explicit side information and a large number of IFFT operations. In this letter we investigate a novel PAPR reduction method based on the radial basis function network and SLM.

  • PDF

Eye Detection using Edge Information and SVM (에지 정보와 SVM의 결합을 통한 눈 검출)

  • 지형근;이경희;정용화
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.347-350
    • /
    • 2002
  • This paper describes eye detection algorithm using edge information and Support Vector Machine (SVM). We adopt an edge detection and labelling algorithm to detect isolated components. Detected candidate eye pairs finally verified by SVM using Radial Basis Function (RBF) kernel. A detection rate over the test set has been achieved more than 90%, and compared with template matching method. this proposed method significantly reduced FAR.

  • PDF

Physiological Responses-Based Emotion Recognition Using Multi-Class SVM with RBF Kernel (RBF 커널과 다중 클래스 SVM을 이용한 생리적 반응 기반 감정 인식 기술)

  • Vanny, Makara;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.364-371
    • /
    • 2013
  • Emotion Recognition is one of the important part to develop in human-human and human computer interaction. In this paper, we have focused on the performance of multi-class SVM (Support Vector Machine) with Gaussian RFB (Radial Basis function) kernel, which has been used to solve the problem of emotion recognition from physiological signals and to improve the accuracy of emotion recognition. The experimental paradigm for data acquisition, visual-stimuli of IAPS (International Affective Picture System) are used to induce emotional states, such as fear, disgust, joy, and neutral for each subject. The raw signals of acquisited data are splitted in the trial from each session to pre-process the data. The mean value and standard deviation are employed to extract the data for feature extraction and preparing in the next step of classification. The experimental results are proving that the proposed approach of multi-class SVM with Gaussian RBF kernel with OVO (One-Versus-One) method provided the successful performance, accuracies of classification, which has been performed over these four emotions.