DOI QR코드

DOI QR Code

A Study on I-PID-Based 2-DOF Snake Robot Head Control Scheme Using RBF Neural Network and Robust Term

RBF 신경망과 강인 항을 적용한 I-PID 기반 2 자유도 뱀 로봇 머리 제어에 관한 연구

  • Sung-Jae Kim (The Industrial Science Technology Research Center, Pukyong National University) ;
  • Jin-Ho Suh (Major of Mechanical System Engineering, Pukyong National University)
  • Received : 2024.04.30
  • Accepted : 2024.05.21
  • Published : 2024.05.31

Abstract

In this paper, we propose a two-degree-of-freedom snake robot head system and an I-PID (Intelligent Proportional-Integral-Derivative)-based controller utilizing RBF (Radial Basis Function) neural network and adaptive robust terms as a control strategy to reduce rotation occurring in the snake robot head. This study proposes a two-degree-of-freedom snake robot head system to avoid complex snake robot dynamics. This system has a control system independent of the snake robot. Subsequently, it utilizes an I-PID controller to implement a control system that can effectively manage rotation at the snake robot head, the robot's nonlinearity, and disturbances. To compensate for the time delay estimation errors occurring in the I-PID control system, an RBF neural network is integrated. Additionally, an adaptive robust term is designed and integrated into the control system to enhance robustness and generate control inputs responsive to signal changes. The proposed controller satisfies stability according to Lyapunov's theory. The proposed control strategy was tested using a 9-degreeof-freedom snake robot. It demonstrates the capability to reduce rotation in Lateral undulation, Rectilinear, and Sidewinding locomotion.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program (No. 20018110, "Development of a wireless teleoperable relief robot for detecting searching and responding in narrow space") funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. S. Kim, D.-G. Shin, J. Pyo, J. Shin, M. Jin, and J. Suh, "A Multi-Sensor Module of Snake Robot for Searching Survivors in Narrow Space," The Journal of Korea Robotics Society, vol. 16, no. 4, pp. 291-298, Nov., 2021, DOI: 10.7746/jkros.2021.16.4.291.
  2. R. Ariizumi and F. Matsuno, "Dynamic Analysis of Three Snake Robot Gaits," IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1075-1087, Oct., 2017, DOI: 10.1109/TRO.2017.2704581.
  3. J. Mukherjee, S. Mukherjee, and I. N. Kar, "Sliding Mode Control of Planar Snake Robot with Uncertainty Using Virtual Holonomic Constraints," IEEE Robot. Automation Letter, vol. 2, no. 2, pp. 1077-1084, Apr., 2017, DOI: 10.1109/LRA.2017.2657892.
  4. J. Whitman, N. Zevallos, M. Travers, and H. Choset, "Snake Robot Urban Search After the 2017 Mexico City Earthquake," 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Philadelphia, PA, USA, pp. 1-6, 2018, DOI: 10.1109/SSRR.2018.8468633.
  5. J. H. Pyo, M. S. Lee, D. G. Shin, K.-H. Seo, H. Joe, J.-H. Suh, and M. Jin, "Generation of snake robot locomotion patterns using genetic algorithm," J. Korean Soc. Precis. Eng., vol. 38, no. 10, pp. 717-724, Oct., 2021, DOI: 10.7736/JKSPE.021.057.
  6. J. Windau and L. Itti, "Multilayer real-time video image stabilization," 2011 IEEE/RSJ Conference on Robots and Systems, San Francisco, CA, USA, pp. 2397-2402, 2011, DOI: 10.1109/IROS.2011.6094738.
  7. S.-J. Kim, M. Jin, and J.-H. Suh, "A Study on the Design of Error-Based Adaptive Robust RBF Neural Network Back-Stepping Controller for 2-DOF Snake Robot's Head," IEEE Access, vol. 11, pp. 23146-23156, 2023, DOI: 10.1109/ACCESS.2023.3249346.
  8. S.-J. Kim and J.-H. Suh, "Adaptive Robust RBF-NN Nonsingular Terminal Sliding Mode Control Scheme for Application to Snake Robot's Head for Image Stabilization," Applied Sciences, vol. 13, no. 8, pp. 4899, Apr., 2023, DOI: 10.3390/app13084899.
  9. C. Au and P. Jin, J" Investigation of serpentine gait of a snake robot with a wireless camera," 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Auckland, New Zealand, pp. 1-6, 2016, DOI: 10.1109/MESA.2016.7587132.
  10. M. Mutlu, K. Melo, M. Vespignani, A. Bernardino, and A. J. Ijspeert, "Where to place cameras on a snake robot: Focus on camera trajectory and motion blur," 2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), West Lafayette, IN, USA, pp. 1-8, 2016, DOI: 10.1109/SSRR.2015.7442948.
  11. N. Sergiienko and L. Chen, "Adaptive head stabilization system for a snake-like robot," International Conference on Robot. Automation, Melbourne, Australia, pp. 1-7, Dec., 2014, [Online], https://api.semanticscholar.org/CorpusID:18654568.
  12. G. Qiao, G. Song, Y. Zhang, J. Zhang, and Y. Li, "Head stabilization control for snake-like robots during lateral undulating locomotion," 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, Indonesia, pp. 392-397, 2014, DOI: 10.1109/ROBIO.2014.7090362.
  13. Z. Bing, L. Cheng, K. Huang, Z. Jiang, G. Chen, F. Rohrbein, and A. Knoll, "Towards autonomous locomotion: Slithering gait design of a snake-like robot for target observation and tracking," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, pp. 2698-2703, 2017, DOI: 10.1109/IROS.2017.8206095.
  14. S. Gay, A. Ijspeert, and J. Santos Victor, "Predictive gaze stabilization during periodic locomotion based on Adaptive Frequency Oscillators," 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, pp. 271-278, 2012, DOI: 10.1109/ICRA.2012.6225001.
  15. J. Florez, F. Calderon, and C. Parra, "Video stabilization taken with a snake robot," Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013, Bogota, Colombia, pp. 1-5, 2013, DOI: 10.1109/STSIVA.2013.6644937.
  16. S. Hasanzadeh and A. Tootoonchi, "Ground adaptive and optimized locomotion of snake robot moving with a novel gait," Autonomous Robot, vol. 28, pp. 457-470, Mar., 2010, DOI 10.1007/s10514-010-9179-y.
  17. H. Yamada, M. Mori, and S. Hirose, "Stabilization of the head of an undulating snake-like robot," 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, pp. 3566-3571, 2007, DOI: 10.1109/IROS.2007.4399390.
  18. A. A. Transeth, K. Y. Petterse, and P. Liljebck, "A survey on snake robot modeling and locomotion," Roboticka, vol. 27, no. 7, pp. 999-1015, Mar, 2009, DOI: 10.1017/S0263574709005414.
  19. P. Liljebck, K. Y. Pettersen, O. Stavdahl, and J. T. Gravdahl, "A review on modelling, implementation, and control of snake robots," Robotics Autonomous System, vol. 60, no. 1, pp. 29-40, Jan., 2012, DOI: 10.1016/j.robot.2011.08.010.
  20. P. Liljeback, S. Oyvind, and K. Y. Pettersen, "Modular pneumatic snake robot 3D modelling, implementation and control, Model," IFAC Proceedings Volumes, vol. 38, no. 1, pp. 19-24, 2005, DOI: 10.3182/20050703-6-CZ-1902.01274.
  21. M. Fliess and C. Join, "Intelligent PID controllers," 2008 16th Mediterranean Conference on Control and Automation, Ajaccio, France, pp. 326-331, 2008, DOI: 10.1109/MED.2008.4601995.
  22. J. Wang, H. Mounier, A. Cela, and S.-I. Niculescu, "Event driven intelligent PID controllers with applications to motion control," IFAC Proceedings Volumes, vol. 44, no. 1, pp. 10080-10085, Jan., 2011, DOI: 10.3182/20110828-6-IT-1002.02960.
  23. Y.-W. Choe, "Optimal Tuning Strategy for 2-Degree-of-Freedom i-PID Controllers," Transactions on the Korean Institute of Electrical Engineers, vol. 67, no. 9, pp. 1202-1209, Sept., 2018, DOI: 10.5370/KIEE.2018.67.9.1202.
  24. J. Baek, W. Kwon, B. Kim, and S. Han, "A Widely Adaptive Time-Delayed Control and Its Application to Robot Manipulators," IEEE Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5332-5342, Jul., 2019, DOI: 10.1109/TIE.2018.2869347.
  25. M. Jin, S. H. Kang, P. H. Chang, and J. Lee, "Robust Control of Robot Manipulators Using Inclusive and Enhanced Time Delay Control," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 5, pp. 2141-2152, Oct., 2017, DOI: 10.1109/TMECH.2017.2718108.
  26. M. Jin, J. Lee, P. H. Chang, and C. Choi, "Practical Nonsingular Terminal Sliding-Mode Control of Robot Manipulators for High-Accuracy Tracking Control," IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3593-3601, Sept., 2009, DOI: 10.1109/TIE.2009.2024097.
  27. J. Liu, Radial Basis Function (RBF) Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation, 1st ed. Springer Berlin, Heidelberg, 2013, pp. 1-280, [Online], https://link.springer.com/book/10.1007/978-3-642-34816-7.
  28. J. Liu, Intelligent Control Design and MATLAB Simulation, 1st ed. Springer Singapore, 2018, pp. 113-233, [Online], https://link.springer.com/book/10.1007/978-981-10-5263-7.
  29. Q. Song and L. Yin, "Robust adaptive fault accommodation for a robot system using a radial basis function neural network," International Journal of Systems Science, vol. 32, no. 2, pp. 195-204, Nov., 2010, DOI: 10.1080/00207720119580.
  30. A.-K. Seghouane and N. Shokouhi, "Adaptive Learning for Robust Radial Basis Function Networks," IEEE Transactions on Cybernetics, vol. 51, no. 5, pp. 2847-2856, May, 2021, DOI: 10.1109/TCYB.2019.2951811.
  31. H.-W. Kim, J. Park and S. H. Park, "Design of Error State-Based RBF Neural Network Adaptive Backstepping Controller for Estimation and Compensation of Various Unknown Errors," Journal of Institute of Control, Robotics and Systems, vol. 24, no. 6, pp. 473-481, Jun., 2018, DOI: 10.5302/J.ICROS.2018.18.0040.
  32. H. W. Kim, Y. Yoon, J. H. Jeong, and J. Park, "The Adaptive Backstepping Controller of RBF Neural Network Which is Designed on the Basis of the Error," Journal of the Korean Society for Precision Engineering, vol. 34, no. 2, pp. 125-131, Oct., 2016, DOI: 10.7736/KSPE.2017.34.2.125.
  33. Y. Tian, W. Feng, M. Ouyang, H. Bian, and Q. Chen, "A positioning error compensation method for multiple degrees of freedom robot arm based on the measured and target position error," Advances in Mechanical Engineering, vol. 14, no. 5, pp. 1-13, May, 2022, DOI: 10.1177/16878132221090094.
  34. S. Slama, A. Errachdi, and M. Benrejeb, "Neural adaptive PID and neural indirect adaptive control switch controller for nonlinear MIMO systems," Mathematical Problems in Engineering, vol. 2019, Aug., 2019, DOI: 10.1155/2019/7340392.
  35. X. Cao, P. Shi, Z. Li, and M. Liu, "Neural-network-based adaptive backstepping control with application to spacecraft attitude regulation," IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 9, pp. 4303-4313, Sept., 2018, DOI: 10.1109/TNNLS.2017.2756993.
  36. Y. Zhang, P.-Y. Peng, and Z.-P. Jiang, "Stable neural controller design for unknown nonlinear systems using backstepping," IEEE Transactions on Neural Networks, vol. 11, no. 6, pp. 1347-1360, Nov., 2000, DOI: 10.1109/72.883443.
  37. W.-Y. Wang, M.-F. Kuo, T.-T. Lee, C.-M. Hong, and Y.-G. Leu, "RBF neural network adaptive backstepping controllers for MIMO nonaffine nonlinear systems," 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 2009, pp. 4946-4951, DOI: 10.1109/ICSMC.2009.5346245.
  38. S. Han, H. Wang, Y. Tia, and N. Christov, "Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton," ISA Transactions, vol. 97, pp. 171-181, Feb., 2020, DOI: 10.1016/j.isatra.2019.07.030.
  39. H. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002, [Online], https://books.google.co.kr/books/about/Nonlinear_Systems.html?id=t_d1QgAACAAJ&redir_esc=y.
  40. Y. Feng, J. Fei, and K. Ma, "Model reference adaptive sliding mode control using RBF neural network for active power filter," International Journal of Electrical Power & Energy Systems, vol. 73, pp. 249-258, Dec., 2015, DOI: 10.1016/j.ijepes.2015.05.009.
  41. Q. Liu, D. Li, S. S. Ge, R. Ji, Z. Ouyang, and K. P. Tee, "Adaptive bias RBF neural network control for a robotic manipulator," Neurocomputing, vol. 447, no. 4, pp. 213-223, Aug., 2021, DOI: 10.1016/j.neucom.2021.03.033.
  42. X. Yali and J. Changsheng, "Trajectory linearization control of an aerospace vehicle based on RBF neural network," Journal of Systems Engineering and Electronics, vol. 19, no. 4, pp. 799-805, Aug., 2008, DOI: 10.1016/S1004-4132(08)60156-5.
  43. L. Wang, T. Chai, and L. Zhai, "Neural-Network-Based Terminal Sliding-Mode Control of Robotic Manipulators Including Actuator Dynamics," IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3296-3304, Sept., 2009, DOI: 10.1109/TIE.2008.2011350.
  44. S. Hirose and M. Mori., "Biologically Inspired Snake-Like Robots," 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China, pp. 1-7, 2005, DOI: 10.1109/ROBIO.2004.1521742.