
ABSTRACT

Air pollution is a challenging issue in some of the lar-
ge cities in developing countries. In this regard, data
interpretation is one of the most important parts of
air quality management. Several methods exist to
analyze air quality; among these, we applied the Mul-
tilayer Perceptron (MLP) and Radial Basis Function
(RBF) methods to predict the hourly air concentration
of benzene in 14 districts in the municipality of Teh-
ran. Input data were hourly temperature, wind speed
and relative humidity. Both methods determined re-
liable results. However, the RBF neural network per-
formance was much closer to observed benzene data
than the MLP neural network. The correlation deter-
mination resulted in 0.868 for MLP and 0.907 for RBF,
while the Index of Agreement (IA) was 0.889 for MLP
and 0.937 for RBF. The sensitivity analysis related to
the MLP neural network indicated that the tempera-
ture had the greatest effect on prediction of benzene
in comparison with the wind speed and humidity in
the study area. The temperature was the most sig-
nificant factor in benzene production because ben-
zene is a volatile liquid.

Key words: Tehran, MLP neural network, RBF neural
network, Benzene, Air pollution

1. INTRODUCTION

Air pollution in urban areas is a challenging prob-
lem, especially in the developing world. The increas-
ing number of vehicles and the existence of a large
number of older cars in the cities has worsened air pol-
lution. Several air pollution parameters exist, such as
particulate matter and carbon monoxide ozone. Ben-
zene has been selected in our research because this
chemical threatens public health. Benzene, a colorless
liquid with a pleasant odor, is a volatile compound.

Exposure to benzene with a concentration of 20,000
parts per million (ppm) for a period of between 5 to 10
minutes can be fatal (International Agency for Rese-
arch on Cancer, 1988) and it causes cancer diseases
(Cruz-Núñez et al., 2003; Jo and Song, 2001). The re-
sults of the studies describe how exposure to benzene
causes acutenonlymphocytic leukemia and preleuke-
mia (Cruz-Núñez et al. 2003; WHO, 1989). The expo-
sure limit of benzene in the workplace is 0.5 ppm, ac-
cording to suggestions from the Occupational Safety
and Health Ministry (USA) (Maltoni et al., 1990). Th-
erefore, benzene in the air can be a public health pro-
blem and needs to be studied. Availability of air pol-
lution data can help air quality management plan a re-
duction pollution program. Several methods exist to
interpret the data, such as deterministic and probabilis-
tic techniques. Among them, the ANN neural network
is the most popular one used to analyze air quality para-
meters.

Many researchers have applied the artificial neural
network (ANN) method to predict air pollution, such
as Ruiz-Suárez et al. (1995); Tasadduq et al. (2002),
Owega et al. (2006), Sousa et al. (2007), Sadr Mosavi
and Rahimi (2008), Kurt et al. (2008), Bodaghpour
(2008), Moustris et al. (2010), Bodaghpor et al. (2011),
Chattopadhay and Chattopadhay (2012), Moustris et
al. (2013).

Other researchers compared the results by ANN-bas-
ed methods with those by a time series, multiple linear
regression or principle component analyses, and they
concluded that the ANN models successfully worked
for the prediction of air pollution better than the other
models mentioned above (Noori et al., 2013; Sousa et
al., 2006; Grivas and Chaloulakou, 2006). In addition,
Charkhastani and Bodaghpour (2008) and Al-Alawi
et al. (2008) reported that the combination of the ANN
with a principle component regression method further
reduced the error between observed and predicted at-
mospheric concentrations of air pollutants.

Building deterministic models requires several para-
meters which were not available in our study. As men-

12 Asian Journal of Atmospheric Environment, Vol. 9(1), 12-21, 2015

Predicting Atmospheric Concentrations of Benzene in 
the Southeast of Tehran using Artificial Neural Network

Gholamreza Asadollahfardi*, Mahdi Mehdinejad, Mohsen Mirmohammadi1) and Rashin Asadollahfardi2)

Civil Engineering Department, Kharazmi University, Tehran, Iran
1)Civil Engineering Department, Tehran University, Tehran, Iran
2)Ghiasi Environmental Company, 1308-1200 West Georgia street Vancouver, Canada

*Corresponding author. Tel: +989121192424, E-mail: asadollahfardi@yahoo.com

Asian Journal of Atmospheric Environment
Vol. 9-1, pp. 12-21, March 2015
doi: http://dx.doi.org/10.5572/ajae.2015.9.1.012

ISSN(Online) 2287-1160
ISSN(Print) 1976-6912



tioned previously, several researchers proved the ANN
results are superior to time series, regression analysis
and principal component. The ANN is able to simulate
many of the complicated nonlinear processes (Manhaj,
1998). For predicting air quality, it is necessary to have
a day’s or a week’s worth of data in advance. The MLP
and RBF can predict the future value. Therefore, we
applied MLP and RBF to our data. 

The first objective of our work was to apply the MLP
and the RBF neural network to predict benzene con-
centration in the air in the southeast of Tehran. The
second purpose was to determine which parameters,
including temperature, humidity and wind speed, were
significant in benzene prediction.

The study area is located in the southeast of Tehran
and the geographic coordinates of the city are 51�, 2′
and, 51�, 36′ East longitude and 35�, 34′ and 35�50′
North latitude. The elevations of Tehran are 2000, 1200
and 1050 meters in the north, in the center and in the
south, respectively. The north and east of the city is
surrounded by the Alborz Mountains and the main
source of precipitation is the Mediterranean. The Al-

borz Mountains and Atlantic winds that blow from
the West act as a barrier to prevent the penetration of
air masses. Tehran is also located in an arid and semi-
arid region. The temperature variations are between
40 Celsius in summer and -5 Celsius in winter. The
annual rainfall is about 250 millimeters. Fig. 1 shows
the study area.

2. EXPERIMENTAL METHOD,
MATERIAL

Considering the availability or the preparation of
accurate and sufficient data for training, the ANN is
very important and the power of the ANN for respond-
ing to the new problem depends on the primary data
to some extent. Therefore, sufficient and precise data
is necessary to train the network well until the network
can extend or predict data for the future propose. The
air quality parameters were the hourly temperature,
wind speed, humidity and benzene. Nine hundred and
forty eight pieces of data was available, from which
800 were applied for training the network and the rest
of them for comparing the simulation data with observ-
ed data. The data were monitored by the Air Quality
Control Company (AQCC) of the municipality of Te-
hran. The AQQC collected data during late July throu-
gh late September 2010. The availability of the data
was the limitation in our study. However, the amount
of data was sufficient for our work. The study area was
district 14 of the municipality of Tehran (southeast of
Tehran). 

The artificial neural network (ANN) is a data process-
ing system, based on a model of the human neurologi-
cal system that consists of three unique components,
including weighting (W), bias (B) and the transfer func-
tion (f). Output is computed by the Equation 1:

a==f(n)==f (wp++b) (1)

Where “p” and “n” are input and output, while “a” is
net input and f is transfer function. The input layer
works as an interface between the input variable data
and the ANN model. Most models also contain one or
two hidden layers although more are possible. These
layers implement most of the iterative calculations
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Fig. 1. The location of the study area with graphical informa-
tion. Fig. 2. Schematic of artificial neural.
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within the network. The output layer serves as the in-
terface between the ANN model and the end user,
transforming model information into an ANN-predict-
ed value of the output variable. Several types of trans-
fer functions exist. Among them We applied the tan-
gent sigmoid function (Fig. 3), which creates output
in the range of (-1,1) and introduces non-linearity into
the network, which can capture non-linear relationships
between input and output values. Static and dynamic
neural networks are two types of artificial neuron net-
work. We applied both Multi-Layer Perceptron (MLP)
and Radial Basis Function (RBF). Consequently, the
static type outputs of the network at any time depend
on the inputs at the same time, which means time in-
dependence (Menhajans and Safpour, 1998).

2. 1  The MLP Neural Network
The MLP is a static type of the ANN (Fig. 4). The

number of neural neurons in the hidden layers for each
model can be calculated by trial and error. The MLP
with a hidden layer, tangent sigmoid transfer function
and linear layer outputs can be modeled by equations
2 and 3 (Menhaj, 1998).

a1
j (t)==F[»R

i==1 w1
i,j pi(t)++b1

j]1‹j‹S1 (2)

a2
k (t)==G[ S1»

j==1
w2

k,j a
1
j (t)++b2

k]1‹k‹S2 (3)

Where R is the number of input vector components,
S1 and S2 are numbers of neural in hidden and output
layers, respectively. P is input vector. w1, w2 are weight-
ing matrix in hidden and output layers, respectively.
b1, b2 are bias vectors in hidden and output layers, res-
pectively. G and F are transfer functions in hidden and
output layers. 

2. 2  Determination of Network Architecture
To determine a suitable number of hidden layers in

the ANN and its relationship with an optimal perfor-
mance of the network is always a point of discussion.
If the selected number of hidden layers is low; it is
likely that the mapping is not properly estimated. Con-
versely, too many hidden layers increase the network
intricacy. Furthermore, augmenting the number of lay-
ers does not necessarily lead to an increase in network
accuracy. Hornik et al. (1989) confirmed the “universal
approximator theory” which explained that a feed for-
ward neural network with a hidden layer of sigmoid
tangent and linear output layer can estimate each com-
plicated function (Leshno et al., 1993; Hornik, 1993,
1991; Cybenko, 1989). This theory reduces the num-
ber of hidden layers in the least amount and declines
the complexity of the network (Hornik et al., 1989).
The rate of the network efficiency depends on using a
suitable number of neural in hidden layers. However,
in our study, we applied the ANN with one and two
hidden layers. The transfer function of the hidden layer
is a sigmoid tangent and the function of the output lay-
er is considered a linear tangent. We developed a pro-
gram and defined it in the Matlab software (2012) to
select the numbers of neurons in two hidden layers and
then to calculate the number of their errors. Afterward,
we selected the neuron numbers which contained mi-
nimum errors.

2. 3  Learning Rate
A parameter is the named learning rate in the train-

ing algorithm of back propagation, which is on the
basis of the steepest descent. Its aim is to minimize
the sum square error of outputs. Obtaining the suitable
learning rate is one of the most sensitive processes of
applying the algorithm of back propagation. The learn-
ing rate is described by a symbol α and determines
the velocity of convergence in this algorithm. The per-
formance of the steepest descent algorithm is enhanc-
ed if the learning rate is allowed to change during the
training process. An adaptive learning rate attempts to
make the learning step as big as possible to keep the
learning stable and requires some changes in the train-
ing procedure.

The sigmoid functions are applied in the MLP and
characterized by the fact that their slopes must appro-
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Fig. 3. Transfer function tangent sigmoid.

Fig. 4. The MLP with a hidden layer (asadollahfardi et al.,
2012).
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ach zero as the input gets larger. This causes a problem
when steepest descent is applied to train a multilayer
network with sigmoid functions, since the gradient can
have a very small magnitude; consequently, it can po-
tentially cause small changes in the W and B, although
the W and B are far from their optimal values. Resili-
ent back propagation training algorithm is used to eli-
minate these harmful effects of the magnitudes of the
partial derivatives (Asadollahfardi et al., 2012).

2. 4  Data Preparation
Upon considering using a tangent sigmoid of the

transfer function in the hidden layer of the networks,
we changed the scale of the data. All applied data, out-
put and input were transformed to the -1 and 1 interval
to prevent network saturation. After finishing the pro-
cess, the predicted values were transformed back to
the real data. We applied Equation 4 to change the scale
of the data (Razavi, 2006).

Ot-A
As==mmmmmm×2-1 (4)

B-A

Where As and Ot are scaled and the observed value of
the benzene, temperature, humidity and wind speed at
time t, respectively. A and B is the lowest and highest
amount of a series of the parameters.

2. 5  Evaluation of Models
To determine the amount of error in predicting of

benzene and performance evaluation of the models,
we applied Volume Error (VE), Mean Absolute Error
(MAE), a Root Mean Squared Error (RMSE) and Mean
Bias Error (MBE) which are indicated in Equations 5
through 8.

1  n Ot-FtVE==mm» ⎜mmmmmm ⎜×100 (5)
n t==1 Ot

1  n

MAE==mm» ⎜Ot-Ft ⎜ (6)
n t==1

1  n

RMSE== mm» (Ot-Ft )2 (7)
n t==1

1  n Ft-AtMBE==mm» ⎜mmmmmm ⎜ (8)
n t==1 At

Where Ft and Ot are the predicted and the observed
values of BOD at time t, respectively, and n is the num-
ber of data.

Also, we applied the Index of Agreement (IA) and
coefficient of determination (R2) between observation
and predicted data to illustrate the validity of the model
(Eqs. 9 and 10) (Heckman, 1979). 

»N
t==1(At-Ft)2

IA==d==1.0-mmmmmmmmmmmmmmmmmmmmmm (9)»N
t==1(⎜Ft-

_
A)++⎜At-

_
A) ⎜2

Where, At, Ft and
_
A are observed (recorded) data, pre-

dicted data and mean observed data, respectively (Will-
mott et al., 2012).

»(O-
_
O)(F-

_
F)

R==mmmmmmmmmmmmmmmmmmmm (10)
»(O-

_
O)2 »(F-

_
F)2

Where, O and F are observed and predicted data, res-
pectively.

_
O and 

_
F are the average of O and F, respec-

tively (Kennedy, 1964).

2. 6  The Radial Basis Function (RBF)
While the structure of the RBF is identical to the MLP,
the RBF simulates the unknown air quality using a
network of Gaussian basis functions in the hidden lay-
er (Equation 9) and linear activation functions in the
output layer (Dawson and Wibly, 2001). 

f (x)==e-x2/2σ2 (11)

Where x is the weighted sum of inputs to the neuron,
σ is the sphere of influence or the width of the basis
function, and f(x) is the matching output of the neu-
ron (Dawson and Wibly, 2001):

The RBF neural networks consist of a very simple
architecture. Their structure contains an input layer, a
single hidden layer, and an output layer, which, at each
output node, makes available a linear combination of
the outputs of the hidden-layer nodes. Training an RBF
includes two steps. First, the basic functions are com-
puted using an algorithm to cluster data in the training
set. Kohohen self-organizing maps (SOMs) or a k-
means clustering algorithm is most often used. Koho-
hen SOMs (Kohohen, 1984) are a form of ‘self-orga-
nizing’ neural network that learn to differentiate pat-
terns within input data. Therefore, a SOM will, conse-
quently, cluster input data according to perceived pat-
terns without containing a corresponding output respo-
nse. K means clustering and includes the organization
of all objects into a predefined number of groups by
minimizing the total squared Euclidean distance for
each object with respect to its nearest cluster center.
Other techniques such as orthogonal least squares and
Maxi Min algorithms have also been applied (Song,
1996). Subsequently, the weights linking the hidden
and the output layer are computed directly applying
the simple matrix inversion and multiplication. The
direct calculation of weights in an RBF makes it faster
in training in comparison with an equivalent MLP
(Dawson and Wibly, 2001).
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3. RESULTS

The statistical summary of the data is presented in
Table 1.

As illustrated in Fig. 5, we trained the ANN network
using input parameters which were temperature, wind
speed and humidity. The Root Mean Squared Error
(RSME) decreased as iteration was increasing. How-
ever, the number of errors was relatively unchanged
after 10 iteration numbers (epoch). Therefore, we stopp-
ed the train of the network at 10 iteration numbers. In
each epoch, input parameter data were introduced to
the network and it created an output parameter which
was benzene. Afterward, the error of the network was
calculated. Finally, the parameters of the ANN network
were amended according to the number of errors. Fig.
5 describes training, validation and testing errors of
the MLP neural network for different iterations.

Tables 2 and 3 indicates some of the neuron results
together with their errors in one and two hidden layers
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Table 1. The Statistical summary of the data used in this
study.

Benzene
Temperature Wind Relative 

Data g
C� velocity humidity

10-6mmm m/s %m3

Average 5.52 31 2.42 23
Peak 33.46 36 9.8 29
Minimum 1.22 23 0.3 12
Count 948 948 948 948

Fig. 5. Training, validation and testing errors of the MLP for different iterations.

Table 2. The error values for the MLP network with a hidden layer and different neurons in testing stage.

Neuron number VE error MAE error RMSE error Neuron number VE error MAE error RMSE error

1 88.32 2.76 3.05 110 38.88 1.83 2.01
5 77.16 2.42 2.67 120 32.3 1.72 1.08

10 84.92 2.62 2.9 130 37.8 1.2 1.31
40 42.27 1.33 1.47 140 35.1 1.1 1.22
50 62.4 1.95 2.15 155 25.4 0.805 0.89
60 45.85 1.43 1.58 160 26.35 0.82 0.93
70 41.06 1.28 1.41 170 25.52 0.84 0.98
80 35.5 1.11 1.23 180 28.7 1.05 1.11
90 34.4 1.05 1.19 190 26.33 0.83 1.02

100 58.79 1.22 1.35 200 27.2 0.87 1.15



in the MLP neural network. As indicated in Table 3,
the number of errors in testing of two hidden layers is
less than a hidden layer in the MLP. Therefore, we sel-
ected the MLP neural network with two hidden layers.

We selected two hidden layers containing 50 and 60
neurons in the first and second layer since it contained
a minimum error for the MLP neural network and the
Mean Bias Error was 0.209. The MSE error was 0.007
(Fig. 5). Fig. 6 indicates the normal plot of selecting
the proper network. The coefficient of determination
between observed and predicted data was 0.868 and
the Index of Agreement (IA) was 0.889, which indi-
cates the accuracy of the model. The horizontal axis of

Fig. 6 is observed value and vertical axis are predicted
value.

Fig. 7 also illustrates a comparison between the obs-
erved and the predicted benzene data. As indicated in
the figure, relatively good agreement exists between
the two types of data.

We selected 800 neurons in the hidden layers as a
starting point to train the network and the RBF neural
network to decrease the number of neurons with itera-
tion to reach a neuron which had a minimum error. As
depicted in Fig. 8, in the training process of the RBF
network, when iteration numbers (epoch) increase, the
errors of the network decline. The training step stops
in two situations. First, when the number of errors
reaches zero. Second, when increasing the numbers of
epochs, the number of errors does not change. In our
work, the amount of error was about 0.1. Decreasing
the number of errors, improves the performance of the
model. The MBE was 0.131, which means the estima-
tion of the model is acceptable.

The aim of the training process was to reach zero
errors and then the train was stopped. Fig. 8 also illu-
strates the training, validation and testing of the train-
ing of the network.

Fig. 9 presents the normal plot between observed
and predicted benzene data of the RBF network. The
coefficient of determination between observed and pre-
dicted benzene was 0.907 and the Index of Agreement
(IA) was 0.937, which indicates the accuracy of the
model, which in turn confirms the suitability of the
RBF network. As previously mentioned, the horizon-
tal axis of Fig. 9 is observed value and vertical axis is
predicted value.

Fig. 10 also illustrates a comparison between observ-
ed and predicted benzene data of the RBF network. As
depicted in the figure, a good agreements between two
types of data exist.

The published studies associated with using artificial
neural networks to predict benzene in the air were rare.
Therefore, we could not compare the results of our
work with similar studies. However, the result of our
work indicates the RBF neural network prediction is
much closer to the observed data than the MLP neural
network, which is similar to the results of Sun et al.
(2008) and Haiming and Xiaoxiao (2013). The results
of the work may be applicable for short time predic-
tion of benzene because of the duration of the data col-
lection. Nevertheless, the amount of data for develop-
ing the models was adequate.

3. 1  Sensitivity Analysis
For sensitivity analysis, we increased and decreased

one of the input parameters and the rest of the parame-
ter data remained unchanged. After that, the changed
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Table 3. The testing error values for the MLP network with
two hidden layers and different neurons.

Neuron number VE error MAE error RMSE error

2-2 80.84 2.55 2.81
2-5 76.08 2.4 2.64
2-12 71.92 2.27 2.5
2-21 79.84 2.51 2.77
2-25 64.23 2.05 2.28

50-50 30.92 0.98 1.1
50-55 27.74 0.87 0.96
51-55 45.59 1.33 1.47
50-60 20.81 0.66 0.73
53-54 38.82 1.22 1.34
53-56 30.51 0.96 1.06
53-57 49.15 1.56 1.72

Fig. 6. The normal plot between observed and predicted
benzene data of the MLP network (testing).
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data and two other parameter data were used as a new
input to the MLP neural network. Afterward, we deter-
mined the new coefficient of determination between
new predictions and the observed data for benzene.
We continued this procedure for the rest of the para-
meter data. Table 4 indicates the results of our sensiti-
vity analysis. As illustrated in the table, temperature
was the first factor affecting the predicting of benzene.
Wind speed and humidity were the second and third
factor in the prediction of the benzene, respectively.
Temperature is the first factor because benzene is a
volatile liquid.

Four types of petroleum losses occur in gas stations
in Tehran, which include delivery losses, fill pipe emis-
sions, breathing losses and seepage. While the under-
ground storage tanks in gas stations are filled up with
petroleum, existing air in the storage tank is forced to
move into the atmosphere which contains a consider-

able amount of benzene. Fill pipe emission is the se-
cond factor for increasing the amount of benzene in
the atmosphere. When cars are filled up, the air inside
the tank is forced to move out of the tank and causes
an increase of benzene in the atmosphere. The amount
of existing petroleum steam in one cubic meter from
the car’s tank equals one cubic meter emitted from an
underground storage tank in petroleum station (Wallace,

18 Asian Journal of Atmospheric Environment, Vol. 9(1), 12-21, 2015

12

10

8

6

4

2

0
0 20 40 60 80 100 120 140 160

Time (hr)

Observed data Predicted data

R2==0.868

B
en

ze
ne

(1
0-

6
g/

m
3 )

Fig. 7. A comparison between observed and predicted benzene data using the MLP network.
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Table 4. The results of the Sensitivity analysis.

R2

Parameters Changing data
Not changing data

++20% -20%

Temperature 0.72 0.75 0.868
Wind speed 0.81 0.72 0.868
Relative humidity 0.80 0.81 0.868



1990; Dean, 1985). The third factor, which is called
breathing loss, occurs during the day from increasing
temperatures. Two factors affect the emission of steam
from petroleum. The first factor is steam emerging by
simple thermal expansion of petroleum from under-
ground storage tank and second, steam come from eva-
poration of petroleum caused by increasing air temper-
ature (Wallace, 1990; Dean, 1985). Petroleum overflow
from the car’s tank and seepage from pumping stations
are the fourth factor of lost petroleum which causes an

increase in benzene.
Also, decreasing wind speed indicators affect the

forecasting ability of the developed model in compari-
son to the increasing wind speed. Finally, relative hu-
midity does not appear to play an important role in
benzene prediction.

4. CONCLUSIONS

Taking into consideration the results and discussions
of the MLP and the RBF neural network associated
with the benzene pollution in the southwest of Tehran,
we summarized the following conclusions:
1. The MLP neural network with two hidden layers

including 50 neurons in the first layer and 60 neu-
rons in the second layer contained a minimum error
in testing. The MAE, VE and RMSE were 20.81,
0.66 and 0.73, respectively.

2. The RBF, with a hidden layer, contained a minimum
error in training, validation and testing in compari-
son with the MLP neural network. The RMSE was
0.007.

3. The coefficient of determination between the obs-
erved and predicted benzene data for both MLP and
RBF neural networks was 0.868 and 0.9077, respec-
tively.

4. The results of the sensitivity analysis indicated that
temperature, wind speed and humidity are the first,
second and third factors affecting the prediction of
benzene, respectively.

5. Comparison between the results of the MLP with
the RBF neural networks in predicting benzene
indicates that the forecasting of the RBF is closer
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Fig. 9. The normal plot between observed and predicted ben-
zene data of the RBF network (testing).
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to observed data than the MLP neural network.
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