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This paper concerns the use of support vector regression 
(SVR), which is based on the kernel method for learning 
from examples, in identification of walking robots. To 
handle complex dynamics in humanoid robot and realize 
stable walking, this paper develops and implements two 
types of reference natural motions for a humanoid, 
namely, walking trajectories on a flat floor and on an 
ascending slope. Next, SVR is applied to model stable 
walking motions by considering these actual motions. 
Three kinds of kernels, namely, linear, polynomial, and 
radial basis function (RBF), are considered, and the 
results from these kernels are compared and evaluated. 
The results show that the SVR approach works well, and 
SVR with the RBF kernel function provides the best 
performance. Plus, it can be effectively applied to model 
and control a practical biped walking robot. 
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I. Introduction 

Humanoid robots–human-shaped and human-like walking 
robots–are thought to have better mobility for locomotion and 
dexterity of manipulation than conventional mobile robots. 
Humanoid robots can be used as proxies or service providers 
for humans, performing tasks in real world environments, 
including rough terrain, steep stairs, and obstacles, both static 
and dynamic. This is the primary motive for the development 
of humanoid robots [1]. Humanoid robots have recently 
evolved into an active area of research and development, with 
the creation of several humanoid robot systems. Many related 
issues such as stability criteria, robot design and development, 
and dynamics analysis have been studied [2]-[5], and many 
technical issues have to be resolved. Among these issues, stable 
and reliable biped walking is a fundamental issue that has yet 
to be resolved with a high degree of reliability. To realize 
human-like walking robots, many studies on biped robot 
locomotion and theories of bipedal walking have been carried 
out. In [6], six theories of bipedal walking are considered and 
supporting evidence for these theories is explored. In [7], the 
basic rhythm underlying animal locomotion is created by 
dedicated neural structures called central pattern generators, 
and the implementation of such structures in simulation and 
their successful use for the control of bipedal walking are 
described. To emulate the actual neuro-control mechanism of 
human bipedal locomotion, an anatomy- and physiology-based 
neuro-muscular-skeletal model is developed in [8]. A real-time 
joint trajectory generator for planar walking bipeds is proposed 
in [9]. In [10], a hierarchical evolutionary algorithm is 
proposed to generate a walking motion through energy 
optimization and to generate a natural motion by considering 
the zero moment point (ZMP). Current research is directed 
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toward the generation of anthropomorphic trajectories, and 
toward the development of efficient ways for the biped robot to 
control them.  

Vukobratovic and others [11] investigated walking dynamics 
and proposed ZMP as an index of walking stability. Shih [12], 
Dasgupta [13], Takanishi [14], and Hirai [15] have proposed 
methods for walking pattern synthesis based on the ZMP, and 
demonstrated walking motion using real robots. The ZMP, 
which is defined as the point on the ground about which the 
sum of all the moments of the active forces equals zero, is 
indispensable in ensuring the dynamic stability of a biped robot. 
If the ZMP is within the convex hull of all contact points 
between the feet and ground, the biped robot is able to walk. 
This convex hull of all contact points is known as the stable 
region [16]. As a result, ZMP trajectories are used as a 
reference for stable walking by humanoid robots. Recently, 
researchers have attempted to develop human-like walking by 
modeling the desired ZMP trajectory. In previous studies [17]-
[19] we employed a fuzzy system and a neuro-fuzzy technique 
to generate a smooth walking pattern, and our results were 
known to be original and unconventional. This stems mainly 
from the relatively higher predictive ability of fuzzy systems 
than their statistical regression counterparts [18]. However, 
other intelligent approaches like the method of support vector 
regression (SVR) have not yet been evaluated. The 
applicability of SVR to humanoid robots needs be investigated 
since it may provide better predictions than typical fuzzy 
systems and thereby provide better insight into human-like 
walking mechanisms. 

In this study, SVR is applied to model the ZMP trajectory of 
a practical humanoid robot. The performance of SVR can vary 
considerably depending on the type of kernels adopted by the 
networks. In this paper, the performance is optimized as a 
function of three kinds of kernels: linear, polynomial, and radial 
basis function (RBF). The SVR model is compared with the 
fuzzy system, neuro-fuzzy system, and classical statistical 
regression models.  

II. Prototype Biped Humanoid Robot 

The practical biped humanoid robot shown in Fig. 1(a) has 
been designed and implemented in this study. The robot has 19 
joints, and their arrangement during motion is shown in Fig. 
1(b). The height and the total weight are 380 mm and 2700 g, 
including the batteries and the CCD camera mounted on the 
robot body, respectively. Each joint is driven by a radio 
controlled (RC) servomotor, which consists of a DC motor, 
gear, and a simple controller. Each RC servomotor is mounted 
on the link structure. The specifications of our humanoid robot 
are given in Table 1. 

 

Fig. 1. (a) Prototype humanoid robot and (b) its joint structure and 
angle representation. 
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Table 1. Specifications of the prototype humanoid robot. 

Height 380 mm 

Weight 2700 g 

CPU TMS320LF2407 DSP 
Actuator 

(RC servo motors)
HSR-5995TG (torque: 30 kg·cm at 7.4 V) 

Degree of freedom 19 DOF (leg+arm+waist) = 2×6 + 3×2+1 
Actuator: AA size Ni-poly  
(7.4 V, 1700 mAh ) Power source 

(Battery) Control board: AAA size Ni-poly  
(7.4 V, 700 mAh) 

 

 

Fig. 2. Biped humanoid robot walking on a flat floor.  



ETRI Journal, Volume 31, Number 5, October 2009 Dong Won Kim et al.   567 

 

Fig. 3. Ideal ZMP positions and corresponding trajectory of a
biped humanoid robot. 
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The ZMP trajectory is used as a stability criterion, and the 
real ZMP is computed based on the data given by the force 
sensors on each foot. The walking motions of the robot on a 
flat surface are shown in Fig. 2. The ideal ZMP positions,    
x-coordinate and y-coordinate, and their corresponding ZMP 
trajectories from [18] are also shown in Fig. 3. 

During a walking cycle, there are two phases: the statically 
stable double-support phase, when the robot is supported on 
both feet simultaneously, and the statically unstable single-
support phase, when only one foot of the robot is in contact 
with the ground while the other is being transferred from the  

  

Fig. 4. Biped humanoid robot walking up a slope.  
 
back to front positions. Thus, the locomotion of the robot 
changes its structure during a single walking cycle. In the ZMP 
trajectories shown in Fig. 3(c), the rectangular symbol denotes 
the foot, and the ZMP positions of the humanoid walking robot 
are in each foot during the single support phases. To ensure 
dynamic stability of the humanoid robot, ZMP must exist in 
each foot. Meanwhile, the hexagonal symbol denotes the 
double support phase, and the ZMP must exist in this domain 
as well. The trajectory of biped humanoid robot shown in Fig. 
3(c) indicates that all the positions of ZMP are in the domain of 
the stable region; therefore, the humanoid walking robot is 
stable. 

Figure 4 depicts the walking motion of the humanoid robot 
when it is walking up an inclined surface. In addition, Fig. 5 
shows the ideal ZMP positions and their corresponding 
trajectories.  

The joint locations during walking are shown in Fig. 6. The 
ideal ZMP trajectory data is obtained from 10 degrees of 
freedom (DOFs) as shown in Fig. 6. A total of 5 DOFs are 
assigned to each leg; two are assigned to the hip, two to the 
ankle, and one to the knee. The cyclic walking pattern has been 
realized from these joint angles. Our biped walking robot can 
walk continuously without falling down. Joint angles in the 
four step motion of our humanoid robot are shown in Fig. 7. 
Support vector regression, as presented in the next section, is 
applied to model the ZMP trajectory of the humanoid robot. 
The performance of SVR is optimized with a variety of kernel  
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Fig. 5. Ideal ZMP positions and corresponding trajectory of biped
humanoid robot. 
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functions. The measured data from the 10 DOFs is shown in 
Fig. 7, and is used as process parameters, input data for ZMP 
trajectories, and output data.  

The ZMP trajectory in the robot foot support area is a 
significant criterion for the stability of the walk. The ZMP 
concept has been properly comprehended by researchers, 
widely used, and frequently cited. Its interpretation is 
summarized below. Further discussion on the ZMP concept 
and conditions is found in [10], [20]. Figure 8 shows the 
concepts of ZMP and stability margin, where p is the point at 
which Tx = 0, Ty =0, and Tx and Ty represent the moments 
around the x-axis and y-axis generated by the reaction force Fr  

 

Fig. 6. Joint angle representation of the 10 degrees of freedom. 
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Fig. 7. Joint angles of the humanoid robot depicted in Fig. 6. 
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(a) First to fifth joint angles of left leg. 

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

50

0
0

-50
-100

50

0

40
0

-40

40
0

-40

Time (s) 

A
ng

le
 (°

) 

(b) Sixth to tenth joint angles of right leg. 

 
 
and the reaction torque Tr, respectively. Point P is defined as 
the ZMP. 

When ZMP exists within the domain of the support surface, 
the contact between the ground and the support leg is stable:  

ZMP ZMP ZMP( , ,0) ,P x y S= ∈  

where PZMP denotes a position of ZMP, and S denotes a domain  
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Fig. 8. Concept of ZMP and stability margin. 
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Fig. 9. Distribution of force sensors on the feet. 
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of the support surface. This condition indicates that no rotation 
around the edges of the foot occurs.  

If the ZMP is within the convex hull of all contact points (the 
stable region), the biped robot is able to walk. If the minimum 
distance between the ZMP and the boundary of the stable 
region is large, the moment preventing the biped robot from 
tipping over is large as well. The minimum distance dzmp 
between the ZMP and the boundary of the stable region is 
called the stability margin [16].  

In many studies, ZMP coordinates are computed using a 
model of the robot and information from the joint encoders. 
However, in this paper, a more direct approach is employed, 
which uses measurement data from sensors mounted on the 
soles of the robot’s feet. Figure 9 illustrates the disposition of 
force sensors on the left and right feet. The type of force sensor 
used in our experiments is the FlexiForce sensor A201. They are 
attached to the four corners of the sole plates and measurements 
are carried out in real time. The foot pressure is obtained by 
summing the force signals. By using the force sensor data, it is 
easy to calculate the actual ZMP data. Foot support phase ZMPs 
in the local foot coordinate frame are computed by  

8
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,
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=

=
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∑
                  (1) 

where fi is a force applied to the right and left foot sensors, and 
ri is a sensor position, which form vectors. These are also 

defined in Fig. 9. In the figure, O is the origin of the foot 
coordinate frame. 

III. Support Vector Regression for Stable Walking 
Patterns 

This section presents some basic concepts of the support 
vector machines (SVM). A more detailed explanation can be 
found in [21]-[24].  

Let (xk, yk), k=1,…, m, represent the training examples for the 
classification problem. Each vector k nR∈x belongs to the 
class { 1, 1}.ky ∈ − +  Assuming linearly separable classes, 
there is a separating hyperplane such that 

( ) 0,T k
ky b+ >w x  k=1,…, m.          (2) 

The distance between the separating hyperplane and the 
closest data points is the margin of separation. The goal of an 
SVM is to maximize this margin. The weights w and the bias b 
may be rescaled so that the constraints (2) can be rewritten as  

( ) 1,T k
ky b+ ≥w x  k=1,…, m.          (3) 

As a consequence, the margin of separation is1/ w , and 
the maximization of the margin is equivalent to the 
minimization of the Euclidean norm of the weight vector. The 
corresponding weights and bias represent the separating 
optimal hyperplane. The data point xk for which the constraints 
(3) are satisfied with the equality sign are called support vectors. 
Introducing the Lagrange multipliers 1, , ,mα α the 
minimization of 2w under constraints (3) can be recast as in 
[25] in the following dual form:  

Find the minimum of  

  
1 1 1

1( ) ( ) ,
2

m m m
k T j

k k j k j
k k j

J y yα α α
= = =

= − +∑ ∑∑α x x       (4) 

subject to the linear constraints 

     
1

0,
m

k k
k

yα
=

=∑                    (5) 

0, 1, , .k k mα ≥ =                (6) 

By solving this QP problem, the optimum Lagrange 
multipliers αk are obtained, one for each data point. Using these 
Lagrange multipliers, the optimum weight vector is determined 
as  

1
.

m
k

k k
k

yα
=

= ∑w x               (7) 

Only the Lagrange multipliers corresponding to the support 
vectors are greater than zero; consequently, the optimum 
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weights depend uniquely on the support vectors (SVs). For an 
SV xi, the optimal hyperplane is wTxi+b=yi. 

The optimum bias can be computed using this. In practice, it 
is better to average the values obtained by considering the set 
of all support vectors, according to 

1

1 ( ) ,
#

m
k T i

i k k
i SV k

b y y
SV

α
∈ =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑ x x         (8) 

in which the expression (7) has been used.  
The SVM formulation can be extended to non-separable 

classes. By introducing the slack variables kξ , the optimal class 
separation can be obtained from  

      
1

1min ,
2

m
T

k
k

C ξ
=

+ ∑w w               (9) 

   
s.t. ( ) 1 ,
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T k
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k
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w x
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In this case, the margin of separation is said to be soft. The 
constant C > 0 is user-defined and controls the tradeoff 
between maximization of the margin and minimization of 
classification errors on the training data set. The dual 
formulation of the QP is almost the same as (4)-(5). The only 
difference is in the bound constraints, which becomes  

      0 , 1, , .k C k mα≤ ≤ =              (11) 

In this case, for the optimum Lagrange multipliers, we have 
0 k Cα< < for the support vector; 0kα = for points correctly 
classified with 0;kξ = and k Cα =  for points with 0.kξ >  
In the soft margin case, the relation (8) still holds, but the 
average is taken over all xi such that 0.iα >   

Finally, the threshold b may be chosen a priori. In this case, 
the SVM can be trained by finding the minimum of  

1 1 1

1( ) (1 ) ( ) ,
2

m m m
k T j

k k j k j
k k j

J b y yα α α
− = =

= − − +∑ ∑∑ x xα   (12) 

subject to the bound constraints 

0 , 1, , .k C k mα≤ ≤ =  

With respect to the general formulation, the equality 
constraint (5) disappears, and it is easier to find the solution. 
From the optimum Lagrange multipliers, one obtains the 
weight vector using (7). 

The SVMs can be applied to regression problems by the 
introduction of an alternative loss function [22], [23]. The basic 
idea in SVR is the mapping of the input data x onto a higher 
dimensional feature space via nonlinear mapping Φ. Then, a 
linear regression problem is obtained and solved in this feature 
space. 

Consider the problem of approximating the set of data,  

  { }1 1 , , ,( , ), , ( , ) nl lD x yx y x y= ∈ ∈R R       (13) 

with the linear function  

      ( ) .,f x bw x= +               (14) 

The optimal regression function is given by the minimum of 
the functional: 

   21( , ) ( ),
2 i i

i
w Cξ ξ ξ− +Φ = + +∑w         (15) 

where C is a pre-specified value, and iξ − and iξ + are slack 
variables representing the upper and lower constraints, 
respectively, on the outputs of the system.  

Using a quadratic loss function 
2

quad ( ( ) ) ( ( ) ) ,L f y f y− = −x x          (16) 

the solution is given by 
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(17) 
The corresponding optimization can be simplified by 

exploiting the Karush-Kuhn-Tuchker (KKT) conditions  
* 0, 1, , ,i i i lα α = = and noting that these imply * .i iβ β=  

The resultant optimization problems is given by  

   2
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with the constraints 
1
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i
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The regression function is given by (14), where 

1
,

1= ,( + ) ,
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l

i i
i
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β
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=

−

∑w x

w x x
 

and xr, xs are any support vectors from each class satisfying 
, 0, 1, 1.r s r sy yα α > = − =  

Where a linear boundary is inappropriate, the SVM can map 
the input vector x onto a high dimensional feature space. By 
choosing a nonlinear mapping a priori, the SVM constructs an 
optimal separating hyperplane in this higher dimensional space. 
Kernel function can be used to perform the nonlinear mapping 
onto the feature space. The regression function is replaced by 
the kernel function 

*( ) ( ) ( , ) .i i i
SVs

f K bα α− +∑x x x  
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Table 2. Kernel functions and corresponding accuracy of humanoid
robot on a flat ground. 

Kernel type x-coordinate y-coordinate 

Linear 47.184 60.704 

Polynomial 9.695 18.568 

RBF 2.524 2.721 

 

 
Different kernels generate inner products to construct 

machines with different types of nonlinear decision surfaces in 
the input space. In this paper, the following three kinds of 
kernel functions are employed: 

2 2

linear: ( , ) ,
polynomial : ( , ) ( 1) ,

RBF : ( , ) exp( 2 ).

T

d

K x y x y
K x y xy

K x y x y δ

=

= +

= − −

     (19) 

An advantage of a linear kernel is that no parameter has to be 
tuned except for the constant C. Here, the constant C is set at 
1,000. Moreover, the degree of the polynomial and the width of 
the RBF are set to 2. 

IV. Walking Pattern Identification 

Using three types of kernel functions (linear, polynomial, and 
RBF) for SVR, approximated models are constructed and their 
results are compared. The accuracy of each result is quantified 
in terms of the mean squared error (MSE) values. The SVR 
uses ideal ZMP data to model the ZMP trajectory of the 
humanoid robot as previously described. In Table 2, MSE 
values corresponding to the three types of kernel functions are 
listed for the humanoid robot walking on a flat surface. The 
results can be compared with respect to various kernel 
functions.  

As seen in Table 2, the linear and polynomial kernels provide 
worse results than the RBF kernel. In addition, the polynomial 
kernel takes a longer time in the procedure. The generated 
ZMP positions from the RBF kernel and their errors between 
the actual data and the generated data are shown in Fig 10. The 
figure also presents the corresponding ZMP trajectories that are 
generated from the RBF kernel and their error distribution, 
which contains the information for the state and range of each 
position error. The figure shows that the generated ZMP is very 
similar to the ideal ZMP trajectory of the biped humanoid robot.  

Another series of comprehensive experiments was 
conducted, and the results are also summarized. Other results 
using SVR for the humanoid robot walking on a sloped floor 
are shown in Table 3. The SVR with the RBF kernel achieved 
the best results among the kernel functions. Similarly, for the 

 

Fig. 10. Generated ZMP positions and corresponding trajectory 
of biped humanoid robot. 
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Fig. 11. Generated ZMP positions and corresponding trajectory of
biped humanoid robot on a surface inclined 10°. 
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Table 3. Kernel functions and corresponding accuracy of humanoid 
robot on a surface inclined 10°. 

Kernel type x-coordinate y-coordinate 

Linear 48.28 58.648 

Polynomial 15.313 18.287 

RBF 6.938 3.732 

Table 4. Results from comparison of SVR with other methods. 

Methods and structure parameters X:Y axis 

Linear regression model: f1(x) 7.780 : 13.558 

Fuzzy system: 1,024 fuzzy rules 4.164 : 4.763 

Fuzzy system: 256 fuzzy rules 4.249 : 4.59 
Flat 

SVR model: 524 support vectors 2.524 : 2.721 

Linear regression model: f2(x) 13.661 : 15.560 

Fuzzy system: 1,024 fuzzy rules 8.552 : 5.011 

Fuzzy system: 256 fuzzy rules 8.862 : 6.443 
Slope

SVR model: 524 support vectors 6.938 : 3.732 

 

two types of walking surfaces, namely, flat and inclined, the 
RBF kernel function produced the best results. Therefore, we 
concluded that the SVR with RBF structures as defined for the 
two types of walking surface is most likely to yield the best 
model for stable walking of a humanoid robot. 

Figure 11 shows the generated ZMP positions and their 
trajectory determined using SVR with the RBF kernel. The 
figure presents the positions and the corresponding errors. 
The ZMP trajectory corresponding to the generated positions 
and their error distributions is also shown. To show the 
excellent overall performance which results from the SVR 
approach, it is compared with other methods. Table 4 
compares the performance of the SVR with that of other 
techniques that have been proposed in the literature [17], [18]. 
The linear regression model used in [18] for flat and sloped 
surfaces is given in (20). Its parameters for a flat level surface 
and an upward slope are shown in Table 5. Using 10 inputs 
and 66 parameters, the linear model was formed. As a fuzzy 
system, 256 fuzzy rules or 1,024 fuzzy rules were considered, 
and their different results are compared in Table 4. SVR 
models using three kinds of kernel functions, namely, linear, 
polynomial, and RBF, and 524 support vectors are utilized 
and considered. The corresponding MSE values are shown in 
Tables 3 and 4. The results were compared on the basis of the 
same performance index for the actual ZMP trajectory. The 
SVR model outperformed the other models; therefore, the 
SVR can be effectively used to model and control a complex 
human-like walking mechanism. 
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Table 5. Parameters of linear regression model in Table 4. 

Regression parameters of f1(x) 

X-axis Y-axis 
108.4851, 10.3680, 1.1915, 0.3362, 
1.7275, 4.8259, -15.8207, 9.3517, 
12.1248, 13.4999, -5.1264, -1.4948, 
0.0266, 0.0248, 0.0087, 33.6153, 
0.3332, 0.0135, -0.0065, 0.0056, 
35.4128, 0.1214, 0.1621, -0.5563, 
0.1647, 1.4391, 2.2490, 1.5958, 
0.7898, -1.5917, 0.0859, 0.1228, 
-2.2760, 0.0914, -0.0063, 0.0771, 
0.1808, 2.4820, 0.0346, 0.3618, 
-0.3191, 0.1166, 0.1081, 0.1438, 
-0.3584, 2.2013, -0.1043, 0.2550, 
0.0290, -0.2450, -2.7943, -1.6056, 
-0.0698, -2.1067, -3.7469, -68.6840, 
-1.7849, -1.3543, -0.5701, 3.6694, 
-0.0141, 0.0227, 0.5020, 0.0262, 
2.4449, 4.0112 

52.0680, -17.7514, -1.0354, 0.0839, 
-4.2881, 8.7571, 25.0461, -19.0592, 
-18.5020, -17.2340, -5.1585, 1.4533, 
-0.0253, -0.0380, -0.0215, 7.9889, 
-0.1767, -0.1888, 0.0389, 0.2932, 
8.2107, -0.4401, -0.4358, 0.4247, 
-2.5863, -1.4285, -2.1032, -1.4435, 
-0.4710, 3.8090, -0.0496, -0.1249, 
2.5672, 0.2856, -0.1162, -0.2939, 
-0.4875, -2.6680, -0.1146, 2.4848, 
0.5023, 0.2796, 0.1778, 0.1036, 
-2.5564, 1.9734, -0.0500, 0.7608, 
0.8599, 1.2586, -1.6399, 1.9891, 
2.7305, 1.7249, 0.7790, -16.4875, 
1.2562, 0.6322, -0.4848, -3.6612, 
-0.1458, 0.0667, -3.4481, 0.3277, 
-2.5003, -1.7484 

Regression parameters of f2(x) 

X-axis Y-axis 
31.5798, -8.8204, -0.4683, -0.2844, 
0.8990, -2.9537, 6.7073, -10.2923, 
-4.4366, 0.6653, 5.3366, -0.2683, 
0.0438, 0.0117, -0.0113, -1.9453, 
0.1702, -0.1431, -0.0489, 0.1250, 
-1.4257, -0.5467, -0.5040, -0.6150, 
1.4378, 0.4543, -0.4429, -0.3305, 
0.0649, -1.5312, 0.0894, 0.0735, 
-1.4971, 0.7066, 0.1695, 0.1273, 
0.1049, 1.6218, -0.0213, -0.7997, 
0.4173, 0.3769, 0.2642, 0.1013, 
0.7901, -0.0711, 0.1841, 0.6104, 
0.3447, -0.0077, -0.3119, -1.5248, 
-1.6166, -0.8470, -0.3548, 3.6680, 
0.4649, 0.3974, 0.3150, 2.2714, 
-0.1978, 0.0073, 1.6824, 0.1023, 
1.0467, 0.7198 

3.9218, -41.2045, -5.1537, 3.9998, 
3.9269, 14.8381, 24.4839, -23.8715, 
-19.9409, -16.4117, -34.1381, 
0.0429, 0.0313, 0.0307, 0.0018, 
0.1937, -0.5284, -0.2007, 0.0116, 
0.0721, 0.2094, -0.8562, 0.0153, 
0.8259, -0.5773, 0.4057, -4.8924, 
-3.6009, -1.7948, 0.8884, 0.0414, 
-0.0357, 0.9235, 0.2915, -0.5816, 
-0.7679, -0.9975, -1.3372, 0.0274, 
0.4515, -0.1458, -0.4310, -0.4380, 
-0.6066, -0.6480, 0.0207, -0.5257,
-0.4860, -0.2706, -0.0880, 0.2174, 
0.3350, 2.5836, 2.0706, 1.2253, 
-0.4741, 3.1642, 2.2698, 1.1578, 
-0.7969, -0.1573, -0.1707, -4.0365, 
0.0476, -3.1981, -1.6756 

 

V. Conclusion and Future Research 

Stable walking pattern identification (analysis) using SVR by 
considering the ZMP trajectory of a practical biped walking 
robot was investigated in this paper. The focus of the paper was 

ZMP walking pattern identification of a practical humanoid 
robot using SVR for stable walking. The trajectory of the ZMP 
is an important criterion for the stability of walking robots even 
though it is difficult to generate stable and natural walking 
motion for a robot.  

In this paper, two types of natural motions of humanoid 
robot were employed for reference and SVR was applied to 
analyze stable walking motions by considering these actual 
motions. It was found that the SVR approach performed well 
and SVR with the RBF kernel function generated the best 
results.  

When a humanoid robot walks on a flat surface, the ZMP of 
the robot is generally included in the convex hull of the foot-
supporting area. However, the robot may suddenly become 
unstable and begin to tip over when there are unexpected 
sudden events. In that case, the ZMP becomes uncontrollable, 
since the contact force between the ground and the feet cannot 
provide the necessary recovery moment to control the ZMP. 
Therefore, there is still much work to be done. Some important 
future works will concern control issues and time consumption. 
Recently intelligent soft computing algorithms, particularly 
using fuzzy systems, neural networks (NNs), and genetic 
algorithms, have been developed. In particular, NNs do not 
require prior knowledge about the target system to be 
controlled or handled and will be efficient in learning nonlinear 
control models from input and output data obtained from real 
target systems. They may be incorporated in controlling the 
ZMP of a humanoid robot to achieve walking stability. In 
future works, we will work to design humanoid robot systems 
and intelligent computing algorithms without heavy cost and 
time consumption.  
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