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ABSTRACT⎯One of the major disadvantages of the 
orthogonal frequency division multiplexing system is high 
peak-to-average power ratio (PAPR). Selected mapping (SLM) 
is an efficient distortionless PAPR reduction scheme which 
selects the minimum PAPR sequence from a group of 
independent phase rotated sequences. However, the SLM 
requires explicit side information and a large number of IFFT 
operations. In this letter we investigate a novel PAPR reduction 
method based on the radial basis function network and SLM. 
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I. Introduction 
To provide a high data rate and reliable communications for 

next generation mobile communication systems, orthogonal 
frequency division multiplexing (OFDM) is an effective 
technique. However, one major disadvantage of the OFDM 
system is that the transmitted signal has a high peak-to-average 
power ratio (PAPR). These large peaks will occasionally reach 
the power amplifier saturation region, resulting in signal 
distortion. Highly linear power amplifiers, at the expense of 
increased cost of the OFDM system, are thus required to 
mitigate this effect. 

Among many PAPR reduction schemes that have been 
proposed, selected mapping (SLM) [1] is an efficient 
distortionless scheme which selects the minimum PAPR 
sequence from a group of independent phase rotated sequences 
with different PAPRs. The main disadvantage of the SLM 
scheme is that the selection information is required at the 
receiver. Previous work on using the SLM scheme without 
explicit side information has been proposed [2], but this 
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scheme still suffers some rate loss in that it requires 
concatenation of label information to the original information 
blocks. Furthermore, the modified SLM scheme with label 
insertion still requires V number of IDFT modules in the 
transmitter, where V is the number of phase rotated sequences. 
The Hopfield neural network (HNN) is a type of multilayer 
perceptron which is an effective nonlinear signal processing 
tool in solving combinatorial optimization problems [3]. 
However, HNN suffers from slow convergence and 
unpredictable solutions during the training stage due to its slow 
steepest-descent based back-propagation algorithm with 
complex multilayer architecture [4]. Recently, a new PAPR 
reduction scheme based on an optimized HNN without any 
training stage or back-propagation algorithm was proposed in 
[5], with great performance results. In this letter, we propose 
using the radial basis function network (RBFN) which was 
introduced in 1988 as a multivariate interpolator [6]. The 
RBFN model is one of the most commonly used neural 
network models and has been applied successfully in areas 
such as channel equalization [7]. Furthermore, RBFN has a 
simple network structure and computational complexity 
compared to the HNN [4]. The proposed scheme provides the 
optimal mapping of the OFDM signal based on the RBFN-
optimized SLM generated sequences, reducing the PAPR 
substantially. 

II. PAPR Reduction 

1. Selected Mapping Scheme 

The main idea of the SLM scheme is to choose one 
particular signal with the lowest PAPR (but retaining the 
original information) from diversely mapped signals. Defining 
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block into V mapped OFDM blocks with different phase 
rotations. Then, one OFDM block is selected out of V 
candidates, namely, the one with the lowest PAPR in the 
time-domain.  

2. RBF Neural Network 

An RBF neural network (RBFN) consists of three basic 
layers: the input layer, the hidden layer, and the output layer. 
The transformation from the input space to the hidden-unit 
space is nonlinear, whereas the mapping from the hidden-unit 
space to the output space is linear. The general architecture of 
the RBF neural network is represented by 
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where x is the input data vector, M is the total number of RBFs, 
wi denotes the weights of the output layer, Φ (•) is the 
Gaussian basis function, and {ci} denotes the centers of RBFs. 
The hidden layer’s activation functions modify themselves 
slowly according to a nonlinear optimization method [8]. As 
for the output layer, the weights evolve rapidly through a linear 
optimization strategy.  

3. RBFN-SLM Scheme 

Our proposed RBFN-based PAPR reduction scheme is 
shown in Fig. 1. As shown in the figure, the RBFN-SLM 
module consists of two main parts. The RBFN phase rotation 
selector selects the optimum phase rotation vector to be applied 
to the current OFDM block and provides the optimum phase 
rotation vector index to the SLM encoder. Using the optimum 
phase rotation vector index obtained in the RBFN phase 
rotation selector, the SLM encoder finds the corresponding  
 

 

Fig. 1. Block diagram of the proposed PAPR reduction scheme.
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phase rotation vector from its database and maps the input 
OFDM blocks to the new minimum PAPR-optimized OFDM 
blocks. The RBFN phase rotation selector is based on the 
RBFN architecture. Its design uses the Gaussian function as the 
basis function; the RBF centers are given by 
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where ),2,0[ πϕ ∈n ,,,1 Nn = and .,,1 Mi = To reduce 
the complexity of the RBFN phase rotation selector, the hidden 
layer’s RBF centers are defined using the conventional SLM 
scheme’s minimum PAPR phase rotation vectors without 
having to use complex nonlinear optimization training. After 
determining the RBF centers, the weights of the output layer 
are adapted using the LMS algorithm expressed as 

),()(1 kkkkk dF xww Φ−+=+ α           (3) 

where α is the learning rate, Fk is the output of the RBFN phase 
rotation selector, dk is the SLM minimum PAPR phase rotation 
index, and xk is the test data vector. The SLM encoder maps the 
input OFDM block into  
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where u~A  is the minimum PAPR phase rotated sequence, A 
is the input OFDM sequence, u~P  is the phase rotation vector, 

{ }Mu ,,2,1~ ∈  is the optimum phase rotation vector index 
selected by the RBFN phase rotation selector, and ⊗  
represents the component-wise multiplication. Note that the 
proposed scheme requires only a single IFFT operation and 
performs PAPR minimization without the complex minimum 
PAPR calculation procedure.  

III. Simulation Results 

In this section, the simulation results of the proposed PAPR 
reduction scheme based on RBFN are presented. The data 
symbols are modulated using the QPSK constellation. The 
number of subcarriers is set to N = 128. The number of the 
RBFN phase rotation selector’s hidden layer centers is set to M 
= 1024 using N dimensional statistically independent rotation 
sequences obtained from the conventional SLM scheme. The 
weights of the output layer are adapted using the LMS 
algorithm. Figure 2 shows some weights of the output layer 
adapting with the increasing number of iterations. Figure 2 
demonstrates that the output layer weights of the RBFN phase 
rotation selector are able to converge fairly quickly at an 
iteration number approximately equal to 5000, which is also 
equal to the training period of the RBFN in the RBFN phase 
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rotation selector. Figure 3 shows a PAPR performance 
comparison of the proposed RBFN-SLM, HNN, and 
conventional SLM methods. The complementary cumulative 
density function (CCDF) of the PAPR of the OFDM signals 
from each method is presented. In the SLM technique, 128 
vectors of phase rotations from the set {±1, ±j} for each 
subcarrier are generated. The vector with the lowest PAPR 
value is selected for OFDM signal transmission. As for the 
HNN technique, the objective function proposed in [3] is used. 
As Fig. 3 demonstrates, the HNN method shows slightly better 
performance compared to the RBFN-SLM technique; however, 
the HNN PAPR reduction scheme’s performance improvement 
is achieved at the expense of high complexity and difficult 
parameter setting problems. As for the proposed scheme, the 
PAPR performance is superior to the SLM method and shows 
similar performance to the HNN methods with much lower 
complexity. 
 

 

Fig. 2. Weights of the output layer of RBFN phase rotation selector.
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Fig. 3. CCDF of PAPR of QPSK-OFDM signals using RBFN-
SLM, HNN, and SLM schemes with N = 128.
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IV. Conclusion 

In this letter, a novel PAPR reduction scheme using RBFN is 
proposed. The proposed RBFN-SLM technique is essentially 
an adaptive nonlinear OFDM signal mapper which reduces the 
PAPR substantially based on the optimum integration of SLM 
and RBFN methods. Compared to the conventional SLM and 
HNN PAPR reduction schemes, the proposed scheme shows a 
significant performance advantage with low computational 
complexity.   
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