• Title/Summary/Keyword: R21

Search Result 6,766, Processing Time 0.039 seconds

Long non-coding RNA T-cell leukemia/lymphoma 6 serves as a sponge for miR-21 modulating the cell proliferation of retinoblastoma through PTEN

  • Tao, Sisi;Wang, Weidong;Liu, Pengfei;Wang, Hua;Chen, Weirong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.449-458
    • /
    • 2019
  • Retinoblastoma (Rb) is one of the most common eye malignancies occur in childhood. The crucial roles of non-coding RNAs, particularly long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been widely reported in Rb progression. In the present study, we found the expression of lncRNA T-cell leukemia/lymphoma 6 (TCL6) was significantly downregulated in Rb tissues and cell lines. Knockdown of lncRNA TCL6 promoted cell proliferation while reduced cell apoptosis in Rb cells. Moreover, lncRNA TCL6 serves as a sponge for miR-21, a previously-reported oncogenic miRNA in Rb, by direct targeting to negatively regulated miR-21 expression, therefore modulating Rb proliferation through miR-21. TCL6 overexpression inhibited Rb cell proliferation while miR-21 overexpression exerted an opposing effect; the effect of TCL6 overexpression was partially attenuated by miR-21 overexpression. PTEN/PI3K/AKT signaling pathway was involved in lncRNA TCL6/miR-21 axis modulating Rb cell proliferation. Taken together, lncRNA TCL6 serves as a tumor suppressor by acting as a sponge for miR-21 to counteract miR-21-mediated PTEN repression.

Serum miR-21 Expression in Human Esophageal Squamous Cell Carcinomas

  • Cai, Er-Hui;Gao, Yong-Xin;Wei, Zhong-Zhi;Chen, Wei-Ying;Yu, Ping;Li, Ke
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1563-1567
    • /
    • 2012
  • To investigate the relationship between serum miRNA-21 (miR-21) expression in esophageal squamous cell carcinomas (ESCCs) and its clinicopathologic features, a 1:1 matched case-control study including 21 patients with ESCC and 21 age- and gender-matched healthy controls was carried out. Serum specimens were taken from all subjects. Total RNA was extracted and the stem-loop real time polymerase chain reaction was used to measure serum miR-21 in both groups. Clinical parameters were assessed to determine associations with serum miR-21 concentrations. Serum miR-21 expression in ESCC samples was significantly higher than in paired cancer-free samples (P<0.05). Metastasis was associated with mir-21 expression in serum (P<0.05), ESCC patients with metastasis having 8.4-fold higher serum miR-21 concentrations than healthy controls. There were no statistically significant associations between miR-21 expression and clinicopathologic parameters, such as gender (P>0.05), age (P>0.05), tumor location (P>0.05), cell differentiation (P>0.05), TNM staging (P>0.05), whether chemo/radiotherapy had been administered (P>0.05), or whether surgery had been performed (P>0.05). These findings suggest that the detection of microRNA-21 in serum might serve as a new tumor biomarker in diagnosis and assessment of prognosis of ESCCs.

Saliva Supernatant miR-21: a Novel Potential Biomarker for Esophageal Cancer Detection

  • Xie, Zi-Jun;Chen, Gang;Zhang, Xu-Chao;Li, Dong-Feng;Huang, Jian;Li, Zi-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6145-6149
    • /
    • 2012
  • Objective: To identify whether saliva supernatant miR-21 can serve as a novel potential biomarker in patients with esophageal cancer (EC). Methods: 32 patients with EC and 16 healthy controls were recruited in this study. Total RNA was extracted from saliva supernatant samples for measurement of miR-21 levels using RT-qPCR and relationships between miR-21 levels and clinical characteristics of EC patients were analyzed. Results: miR-21 was significantly higher in the EC than control groups. The sensitivity and specificity were 84.4% and 62.5% respectively. Supernatant miR-21 levels showed no significant correlation with cancer stage, differentiation and nodal metastasis. Conclusions: Saliva supernatant miR-21 may be a novel biomarker for EC.

Human peripheral blood-derived exosomes for microRNA delivery

  • Ji‑Young Kang;Hyewon Park;Hyoeun Kim;Dasom Mun;Hyelim Park;Nuri Yun;Boyoung Joung
    • International Journal of Molecular Medicine
    • /
    • v.43 no.6
    • /
    • pp.2319-2328
    • /
    • 2019
  • Exosomes serve important functions in cell-to-cell communication and biological functions by serving as a delivery cargo shuttle for various molecules. The application of an improved delivery method for microRNAs (miRNAs/miRs) may enhance their potential as a therapeutic tool in cardiac diseases. Thus, the present study investigated whether human peripheral blood-derived exosomes may be used as a delivery cargo system for miRNAs, and whether the delivery of miR-21 using a human peripheral blood derived-exosome may influence the degree of remodeling following myocardial infarction (MI). In H9C2 and HL-1 cells, miR-21 expression was successfully regulated by treatment with human peripheral blood derived-exosomes loaded with an miR-21 mimic or inhibitor compared with untreated cells. In addition, the mRNA and protein expression levels of SMAD family member 7 (Smad7), phosphatase and tensin homolog (PTEN) and matrix metalloproteinase 2 (MMP2), which are involved in cardiac fibrosis, were associated with the uptake of miR-21 mimic- or inhibitor-loaded exosomes. Similarly, the in vivo mRNA and protein expression of Smad7, PTEN and MMP2 were altered following treatment with miR-21 mimic- or inhibitor-loaded exosomes. Furthermore, miR-21 mimic-loaded exosomes enhanced fibrosis, whereas miR-21 inhibitor-loaded exosomes reduced fibrosis in a mouse MI model. These results suggested that miRNA-loaded human peripheral blood derived-exosomes may be used as a therapeutic tool for cardiac diseases.

Vaccination of Shrimp (Litopenaeus vannamei) against White Spot Syndrome Virus (WSSV) by Oral Vaccination of Recombinant Fusion Protein, rVP19+28 (사료급이(oral feeding)에 의한 vaccination을 통한 흰반점바이러스(WSSV)에 대한 재조합단백질 rVP19+28의 백신효능의 확인)

  • Nguyen, Thi-Hoai;Kim, Yeong-Jin;Choi, Mi-Ran;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1181-1185
    • /
    • 2010
  • This study was carried out to evaluate the vaccination effects of recombinant fusion protein rVP19+28 against WSSV in shrimp, Litopenaeus vannamei. The VP19+28 gene fused with VP19 and VP28 genes was inserted into pET-28a(+) expression vector and cloned in E. coli BL21 (DE3) to produce fused gene product recombinant VP19+VP28 as a single protein. For the vaccination, the shrimps were fed with pellets coated with purified recombinant protein, rVP19+28, for 2 weeks. Then, constant amounts of WSSV at $1{\times}10^2$ diluted stocks were injected to the muscle of the shrimp for the in vivo challenge tests. Non-vaccinated shrimps showed a cumulative mortality of 100% at 11 days post-challenge. The shrimps vaccinated with the inactivated E. coli BL21 as a host cell control showed cumulative mortality of 100% at 17 days post-challenge. The shrimps vaccinated with rVP19, rVP28 and rVP19+28 showed mortalities of 66.7%, 41.7% and 41.7% at 21 days post-challenge, respectively. These results indicated that the rVP28 and rVP19+28 had relatively high vaccination effects against WSSV infection. However, this study suggests that the fusion protein rVP19+28 was more effective for the protection of shrimp against WSSV than rVP28, even though the cumulative mortalities were the same 21 days post-challenge.

Stereospecific Synthesis of the (2R,3S)- and (2R,3R)-3-Amino-2-hydroxy-4-phenylbutanoic Acids from D-Glucono-δ-lactone

  • Lee, Jin Hwan;Kim, Jin Hyo;Lee, Byong Won;Seo, Woo Duck;Yang, Min Suk;Park, Ki Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1211-1218
    • /
    • 2006
  • The enantiomerically pure (2R,3S)- and (2R,3R)-3-amino-2-hydroxy-4-phenylbutanoic acids (AHPBA) 1 and 3 are readily obtained from D-glucono-a-lactone. Both AHPBAs are the structural key units of KMI derivatives which are the potent inhibitors of BACE 1 ($\beta$-secretase) and HIV protease. Additionally, the obtained AHPBAs 1 and 3 are converted to dipeptides of bestatin stereoisomers 2 and 4.

Expression Analysis of MiR-21, MiR-205, and MiR-342 in Breast Cancer in Iran

  • Savad, Shahram;Mehdipour, Parvin;Miryounesi, Mohammad;Shirkoohi, Reza;Fereidooni, Forouzandeh;Mansouri, Fatemeh;Modarressi, Mohammad Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.873-877
    • /
    • 2012
  • MicroRNAs (miRNAs) are short non-coding RNA molecules characterized by their regulatory roles in cancer and gene expression. We analyzed the expression of miR-21, miR-205, and miR-342 in 59 patients with breast cancer. Samples were divided into three different groups according to their immunohistochemistry (IHC) classification: ER- positive and/or PR-positive group ($ER^+$ and/or $PR^+$; group I); HER2-positive group ($HER^{2+}$; group II); and ER/ PR/ HER2- negative ($ER^-$/ $PR^-$/ $HER^{2-}$; group III) as the triple negative group. The expression levels of the 3 miRNAs were analyzed in the tumor samples and the compared with the normal neighboring dissected tumor (NNDT) samples in all three groups. The expression of miR-21 was similar in all three groups. In patients positive for P53 by IHC, positive for axillary lymph node metastasis and higher tumor stages, it appeared to have significantly elevated. However, significant increase was not found among the 18 fibroadenoma samples. Both miR-205 and miR-342 expressions were significantly down regulated in group III. We conclude that miR-21 does not discriminate between different breast cancer groups. In contrast, miR-205 and miR-342 may be used as potential biomarkers for diagnosis of triple negative breast cancer.

12-O-Tetradecanoylphorbol-13-Acetate Induces Keratin 8 Phosphorylation and Reorganization via Expression of Transglutaminase-2

  • Lee, Eun Ji;Park, Mi Kyung;Kim, Hyun Ji;Kang, June Hee;Kim, You Ri;Kang, Gyeoung Jin;Byun, Hyun Jung;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.122-128
    • /
    • 2014
  • The stiffness of cancer cells is attributable to intermediate filaments such as keratin. Perinuclear reorganization via phosphorylation of specific serine residue in keratin is implicated in the deformability of metastatic cancer cells including the human pancreatic carcinoma cell line (PANC-1). 12-O-Tetradecanoylphorbol-13-acetate (TPA) is a potent tumor promoter and protein kinase C (PKC) activator. However, its effects on phosphorylation and reorganization of keratin 8 (K8) are not well known. Therefore, we examined the underlying mechanism and effect of TPA on K8 phosphorylation and reorganization. TPA induced phosphorylation and reorganization of K8 and transglutaminase-2 (Tgase-2) expression in a time- and dose-dependent manner in PANC-1 cells. These effects peaked after 45 min and 100 nM of TPA treatment. We next investigated, using cystamine (CTM), Tgase inhibitor, and Tgase-2 gene silencing, Tgase-2's possible involvement in TPA-induced K8 phosphorylation and reorganization. We found that Tgase-2 gene silencing inhibited K8 phosphorylation and reorganization in PANC-1 cells. Tgase-2 gene silencing, we additionally discovered, suppressed TPA-induced migration of PANC-1 cells and Tgase-2 overexpression induced migration of PANC-1 cells. Overall, these results suggested that TPA induced K8 phosphorylation and reorganization via Tgase-2 expression in PANC-1 cells.

Involvement of Transglutaminase-2 in α-MSH-Induced Melanogenesis in SK-MEL-2 Human Melanoma Cells

  • Kim, Hyun Ji;Lee, Hye Ja;Park, Mi Kyung;Gang, Kyung Jin;Byun, Hyun Jung;Park, Jeong Ho;Kim, Mi Kyung;Kim, Soo Youl;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.207-212
    • /
    • 2014
  • Skin hyperpigmentation is one of the most common skin disorders caused by abnormal melanogenesis. The mechanism and key factors at play are not fully understood. Previous reports have indicated that cystamine (CTM) inhibits melanin synthesis, though its molecular mechanism in melanogenesis remains unclear. In the present study, we investigated the effect of CTM on melanin production using ELISA reader and the expression of proteins involved in melanogenesis by Western blotting, and examined the involvement of transglutaminase-2 (Tgase-2) in SK-MEL-2 human melanoma cells by gene silencing. In the results, CTM dose-dependently suppressed melanin production and dendrite extension in a-MSH-induced melanogenesis of SK-MEL-2 human melanoma cells. CTM also suppressed a-MSH-induced chemotactic migration as well as the expressions of melanogenesis factors TRP-1, TRP-2 and MITF in a-MSH-treated SK-MEL-2 cells. Meanwhile, gene silencing of Tgase-2 suppressed dendrite extension and the expressions of TRP-1 and TRP-2 in a-MSH-treated SK-MEL-2 cells. Overall, these findings suggested that CTM suppresses a-MSH-induced melanogenesis via Tgase-2 inhibition and that therefore, Tgase-2 might be a new target in hyperpigmentation disorder therapy.