Involvement of Transglutaminase-2 in α-MSH-Induced Melanogenesis in SK-MEL-2 Human Melanoma Cells

  • Kim, Hyun Ji (BK21PLUS R-FIND team, College of Pharmacy, Dongguk University) ;
  • Lee, Hye Ja (BK21PLUS R-FIND team, College of Pharmacy, Dongguk University) ;
  • Park, Mi Kyung (BK21PLUS R-FIND team, College of Pharmacy, Dongguk University) ;
  • Gang, Kyung Jin (BK21PLUS R-FIND team, College of Pharmacy, Dongguk University) ;
  • Byun, Hyun Jung (BK21PLUS R-FIND team, College of Pharmacy, Dongguk University) ;
  • Park, Jeong Ho (BK21PLUS R-FIND team, College of Pharmacy, Dongguk University) ;
  • Kim, Mi Kyung (BK21PLUS R-FIND team, College of Pharmacy, Dongguk University) ;
  • Kim, Soo Youl (National Cancer Center) ;
  • Lee, Chang Hoon (BK21PLUS R-FIND team, College of Pharmacy, Dongguk University)
  • Received : 2014.03.11
  • Accepted : 2014.05.07
  • Published : 2014.05.31


Skin hyperpigmentation is one of the most common skin disorders caused by abnormal melanogenesis. The mechanism and key factors at play are not fully understood. Previous reports have indicated that cystamine (CTM) inhibits melanin synthesis, though its molecular mechanism in melanogenesis remains unclear. In the present study, we investigated the effect of CTM on melanin production using ELISA reader and the expression of proteins involved in melanogenesis by Western blotting, and examined the involvement of transglutaminase-2 (Tgase-2) in SK-MEL-2 human melanoma cells by gene silencing. In the results, CTM dose-dependently suppressed melanin production and dendrite extension in a-MSH-induced melanogenesis of SK-MEL-2 human melanoma cells. CTM also suppressed a-MSH-induced chemotactic migration as well as the expressions of melanogenesis factors TRP-1, TRP-2 and MITF in a-MSH-treated SK-MEL-2 cells. Meanwhile, gene silencing of Tgase-2 suppressed dendrite extension and the expressions of TRP-1 and TRP-2 in a-MSH-treated SK-MEL-2 cells. Overall, these findings suggested that CTM suppresses a-MSH-induced melanogenesis via Tgase-2 inhibition and that therefore, Tgase-2 might be a new target in hyperpigmentation disorder therapy.



  1. Bolognia, J. L., Sodi, S. A., Osber, M. P. and Pawelek, J. M. (1995) Enhancement of the depigmenting effect of hydroquinone by cystamine and buthionine sulfoximine. Br. J. Dermatol. 133, 349-357.
  2. Borrell-Pages, M., Canals, J. M., Cordelieres, F. P., Parker, J. A., Pineda, J. R., Grange, G., Bryson, E. A., Guillermier, M., Hirsch, E., Hantraye, P., Cheetham, M. E., Neri, C., Alberch, J., Brouillet, E., Saudou, F. and Humbert, S. (2006) Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase. J. Clin. Invest. 116, 1410-1424.
  3. Brzoska, T., Luger, T. A., Maaser, C., Abels, C. and Bohm, M. (2008) Alpha-melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr. Rev. 29, 581-602.
  4. Chang, T. S. and Chen, C. T. (2012) Inhibitory effect of homochlorcyclizine on melanogenesis in alpha-melanocyte stimulating hormone- stimulated mouse B16 melanoma cells. Arch. Pharm. Res. 35, 119-127.
  5. Fok, J. Y., Ekmekcioglu, S. and Mehta, K. (2006) Implications of tissue transglutaminase expression in malignant melanoma. Mol. Cancer Ther. 5, 1493-1503.
  6. Ho, H. and Ganesan, A. K. (2011) The pleiotropic roles of autophagy regulators in melanogenesis. Pigment Cell Melanoma. Res. 24, 595-604.
  7. Kim, N. H., Lee, C. H. and Lee, A. Y. (2010) H19 RNA downregulation stimulated melanogenesis in melasma. Pigment Cell. Melanoma Res. 23, 84-92.
  8. Lee, A. Y. and Noh, M. (2013) The regulation of epidermal melanogenesis via cAMP and/or PKC signaling pathways: insights for the development of hypopigmenting agents. Arch. Pharm. Res. 36, 792-801.
  9. Lee, H. J., Park, M. K., Bae, H. C., Yoon, H. J., Kim, S. Y. and Lee, C. H. (2012a) Transglutaminase-2 is involved in all-trans retinoic acid-induced invasion and matrix metalloproteinases expression of SH-SY5Y neuroblastoma cells via NF-kappaB pathway. Biomol. Ther. 20, 286-292.
  10. Lee, H. J., Park, M. K., Kim, S. Y., Park Choo, H. Y., Lee, A. Y. and Lee, C. H. (2011) Serotonin induces melanogenesis via serotonin receptor 2A. Br. J. Dermatol. 165, 1344-1348.
  11. Lee, H. J., Park, M. K., Lee, E. J., Kim, Y. L., Kim, H. J., Kang, J. H., Kim, H. M., Lee, A. Y. and Lee, C. H. (2012b) Histamine receptor 2-mediated growth-differentiation factor-15 expression is involved in histamine-induced melanogenesis. Int. J. Biochem. Cell Biol. 44, 2124-2128.
  12. Lim, Y. J., Lee, E. H., Kang, T. H., Ha, S. K., Oh, M. S., Kim, S. M., Yoon, T. J., Kang, C., Park, J. H. and Kim, S. Y. (2009) Inhibitory effects of arbutin on melanin biosynthesis of alpha-melanocyte stimulating hormone-induced hyperpigmentation in cultured brownish guinea pig skin tissues. Arch. Pharm. Res. 32, 367-373.
  13. Lorand, L. and Graham, R. M. (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 4, 140-156.
  14. Mhaouty-Kodja, S. (2004) Ghalpha/tissue transglutaminase 2: an emerging G protein in signal transduction. Biol. Cell 96, 363-367.
  15. Niger, C., Beazley, K. E. and Nurminskaya, M. (2013) Induction of chondrogenic differentiation in mesenchymal stem cells by TGFbeta cross-linked to collagen-PLLA [poly(L-lactic acid)] scaffold by transglutaminase 2. Biotechnol. Lett. 35, 2193-2199.
  16. Ozpolat, B., Akar, U., Mehta, K. and Lopez-Berestein, G. (2007) PKC delta and tissue transglutaminase are novel inhibitors of autophagy in pancreatic cancer cells. Autophagy 3, 480-483.
  17. Park, H. Y., Kosmadaki, M., Yaar, M. and Gilchrest, B. A. (2009) Cellular mechanisms regulating human melanogenesis. Cell. Mol. Life Sci. 66, 1493-1506.
  18. Plensdorf, S. and Martinez, J. (2009) Common pigmentation disorders. Am. Fam. Physician 79, 109-116.
  19. Qiu, L., Zhang, M., Sturm, R. A., Gardiner, B., Tonks, I., Kay, G. and Parsons, P. G. (2000) Inhibition of melanin synthesis by cystamine in human melanoma cells. J. Invest. Dermatol. 114, 21-27.
  20. Son, J., Kim, M., Jou, I., Park, K. C. and Kang, H. Y. (2014) IFN-gamma Inhibits Basal and alpha-MSH-Induced Melanogenesis. Pigment Cell Melanoma Res. 27, 201-208.
  21. Tucholski, J., Lesort, M. and Johnson, G. V. (2001) Tissue transglutaminase is essential for neurite outgrowth in human neuroblastoma SH-SY5Y cells. Neuroscience 102, 481-491.
  22. Van Strien, M. E., Baron, W., Bakker, E. N., Bauer, J., Bol, J. G., Breve, J. J., Binnekade, R., Van Der Laarse, W. J., Drukarch, B. and Van Dam, A. M. (2011) Tissue transglutaminase activity is involved in the differentiation of oligodendrocyte precursor cells into myelinforming oligodendrocytes during CNS remyelination. Glia 59, 1622-1634.
  23. Yamaguchi, Y., Brenner, M. and Hearing, V. J. (2007) The regulation of skin pigmentation. J. Biol. Chem. 282, 27557-27561.
  24. Yang, Y., Dickinson, C., Haskell-Luevano, C. and Gantz, I. (1997) Molecular basis for the interaction of [Nle4,D-Phe7]melanocyte stimulating hormone with the human melanocortin-1 receptor. J. Biol. Chem. 272, 23000-23010.

Cited by

  1. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway vol.6, pp.1, 2016,
  2. Cycloalliin Inhibits Melanin Biosynthesis in B16 Mouse Melanoma Cells vol.24, pp.4, 2018,
  3. Discovery of new depigmenting compounds and their efficacy to treat hyperpigmentation: Evidence from in vitro study vol.18, pp.3, 2019,