Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.8.1181

Vaccination of Shrimp (Litopenaeus vannamei) against White Spot Syndrome Virus (WSSV) by Oral Vaccination of Recombinant Fusion Protein, rVP19+28  

Nguyen, Thi-Hoai (Department of Biotechnology, Pukyong National University)
Kim, Yeong-Jin (Department of Biotechnology, Pukyong National University)
Choi, Mi-Ran (Department of Biotechnology, Pukyong National University)
Kim, Sung-Koo (Department of Biotechnology, Pukyong National University)
Publication Information
Journal of Life Science / v.20, no.8, 2010 , pp. 1181-1185 More about this Journal
Abstract
This study was carried out to evaluate the vaccination effects of recombinant fusion protein rVP19+28 against WSSV in shrimp, Litopenaeus vannamei. The VP19+28 gene fused with VP19 and VP28 genes was inserted into pET-28a(+) expression vector and cloned in E. coli BL21 (DE3) to produce fused gene product recombinant VP19+VP28 as a single protein. For the vaccination, the shrimps were fed with pellets coated with purified recombinant protein, rVP19+28, for 2 weeks. Then, constant amounts of WSSV at $1{\times}10^2$ diluted stocks were injected to the muscle of the shrimp for the in vivo challenge tests. Non-vaccinated shrimps showed a cumulative mortality of 100% at 11 days post-challenge. The shrimps vaccinated with the inactivated E. coli BL21 as a host cell control showed cumulative mortality of 100% at 17 days post-challenge. The shrimps vaccinated with rVP19, rVP28 and rVP19+28 showed mortalities of 66.7%, 41.7% and 41.7% at 21 days post-challenge, respectively. These results indicated that the rVP28 and rVP19+28 had relatively high vaccination effects against WSSV infection. However, this study suggests that the fusion protein rVP19+28 was more effective for the protection of shrimp against WSSV than rVP28, even though the cumulative mortalities were the same 21 days post-challenge.
Keywords
WSSV; VP19; VP28; fusion protein; Litopenaeus vannamei;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Roux, M. M., A. Pain, K. R. Klimpel, and A. K. Dhar. 2002. The lipopolysaccharide and $\beta$-1, 3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris). J. Virol. 76, 7140-7149.   DOI
2 Van Hulten, M. C. W., J. Witteveldt, M. Snippe, and J. M. Vlak. 2001. White spot syndrome virus envelop protein VP28 is involved in the systemic infection of shrimp. Virology 285, 228-233.   DOI
3 Venegas, C. A., L. Nonaka, K. Mushiake, T. Nishizawa, and K. Muroga. 2000. Quasi-immune response of Penaeus japonicus to penaeid rod-shaped DNA virus (PRDV). Dis. Aquat. Org. 42, 83-89.   DOI
4 Vlak, J. M., J. R. Bonami, T. W. Flegel, G. H. Kou, D. V. Lightner, C. F. Loh, P. C. Loh, and P. W. Walker. 2005. Nimaviridae, pp. 1162, Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, Academic Press, London, UK.
5 Witteveldt, J., C. C. Cifuentes, J. M. Vlak, and M. C. W. Van Hulten. 2004. Protection of Penaeus monodon against white spot syndrome virus by oral vaccination. J. Virol. 78, 2057-2061.   DOI
6 Wu, J. L., T. Nishioka, K. Mori, T. Nishizawa, and K. A. Muroga. 2002. A time-course study on the resistance of Penaeus japonicus induced by artificial infection with white spot syndrome virus. Fish Shellfish Immunol. 13, 391-403.   DOI
7 Rojtinnakorn, J., I. Hirono, T. Itami, Y. Takahashi, and T. Aoki. 2002. Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach. Fish Shellfish Immunol. 13, 69-83.   DOI
8 Escobedo-Bonilla, C. M., V. Alday-Sanz, M. Wille, P. Sorgeloos, M. B. Pensaert, and H. J. Nauwynck. 2008. A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. J. Fish Dis. 31, 1-18.   DOI
9 Kurtz, J. and K. Franz. 2003. Innate defence: evidence for memory in invertebrate immunity. Nature 425, 37-38.   DOI
10 Kurtz, J. and K. Franz. 2003. Innate defence: evidence for memory in invertebrate immunity. Nature 425, 37-38.   DOI