DOI QR코드

DOI QR Code

Stereospecific Synthesis of the (2R,3S)- and (2R,3R)-3-Amino-2-hydroxy-4-phenylbutanoic Acids from D-Glucono-δ-lactone

  • Lee, Jin Hwan (Division of Applied Life Science (BK21 Program), Department of Agricultural Chemistry, Research Institute of Life Science, Gyeongsang National University) ;
  • Kim, Jin Hyo (Division of Applied Life Science (BK21 Program), Department of Agricultural Chemistry, Research Institute of Life Science, Gyeongsang National University) ;
  • Lee, Byong Won (Division of Applied Life Science (BK21 Program), Department of Agricultural Chemistry, Research Institute of Life Science, Gyeongsang National University) ;
  • Seo, Woo Duck (Division of Applied Life Science (BK21 Program), Department of Agricultural Chemistry, Research Institute of Life Science, Gyeongsang National University) ;
  • Yang, Min Suk (Division of Applied Life Science (BK21 Program), Department of Agricultural Chemistry, Research Institute of Life Science, Gyeongsang National University) ;
  • Park, Ki Hun (Division of Applied Life Science (BK21 Program), Department of Agricultural Chemistry, Research Institute of Life Science, Gyeongsang National University)
  • Published : 2006.08.20

Abstract

The enantiomerically pure (2R,3S)- and (2R,3R)-3-amino-2-hydroxy-4-phenylbutanoic acids (AHPBA) 1 and 3 are readily obtained from D-glucono-a-lactone. Both AHPBAs are the structural key units of KMI derivatives which are the potent inhibitors of BACE 1 ($\beta$-secretase) and HIV protease. Additionally, the obtained AHPBAs 1 and 3 are converted to dipeptides of bestatin stereoisomers 2 and 4.

Keywords

References

  1. Cole, D. C. Tetrahedron 1994, 50, 9517 https://doi.org/10.1016/S0040-4020(01)85527-7
  2. Juaristi, E.; Quintana, D.; Escalante, J. Aldrichim. Acta 1994, 27, 3
  3. Umezawa, H.; Aoyagi, T.; Suda, H.; Hamada, M.; Takeuchi, T. J. Antibiot. 1976, 29, 97 https://doi.org/10.7164/antibiotics.29.97
  4. Pearson, W. H.; Hines, J. V. J. Org. Chem. 1989, 54, 4235 https://doi.org/10.1021/jo00278a050
  5. Suda, H.; Takita, T.; Aoyagi, T.; Umezawa, H. J. Antibiot. 1976, 29, 600 https://doi.org/10.7164/antibiotics.29.600
  6. Ha, H.-J.; Park, G.-S.; Ahn, Y.-G.; Lee, G. S. Bioorg. Med. Chem. Lett. 1988, 8, 1619 https://doi.org/10.1016/S0960-894X(98)00271-6
  7. Nicolaou, K. C.; Dai, W.-M.; Guy, R. K. Angew. Chem. Intl. Ed. Engl. 1994, 33, 15 https://doi.org/10.1002/anie.199400151
  8. Umemura, E.; Tsuchiya, T.; Umezawa, S. J. Antibiot. 1988, 41, 530 https://doi.org/10.7164/antibiotics.41.530
  9. Okino, T.; Matsuda, H.; Murakami, M.; Yamaguchi, K. Tetrahedron Lett. 1993, 34, 501 https://doi.org/10.1016/0040-4039(93)85112-A
  10. Lee, K. H.; Chung, Y. J.; Kim, Y. C.; Song, S. J. Bull. Korean Chem. Soc. 2005, 26, 1079 https://doi.org/10.5012/bkcs.2005.26.7.1079
  11. Lee, B. W.; Lee, J. H.; Jang, K. C.; Kang, J. E.; Kim, J. H.; Park, K. M.; Park, K. H. Tetrahedron Lett. 2003, 44, 5905 https://doi.org/10.1016/S0040-4039(03)01394-7
  12. Seo, W. D.; Long, M. J. C.; Kim, J. H.; Park, J. K.; Park, K. M.; Park, K. H. Synlett 2005, 2289
  13. Herranz, R.; Castro-Pichel, J.; Vinuesa, S.; Garcia Lopez, M. T. J. Org. Chem. 1990, 55, 2232 https://doi.org/10.1021/jo00294a047
  14. Matsumoto, T.; Kobayashi, Y.; Takemoto, Y.; Ito, Y.; Kamijo, T.; Harada, H.; Terashima, S. Tetrahedron Lett. 1990, 31, 4175 https://doi.org/10.1016/S0040-4039(00)97574-9
  15. Upadhya, T. T.; Sudalai, A. Tetrahedron: Asymmetry 1997, 8, 3685 https://doi.org/10.1016/S0957-4166(97)00500-4
  16. Rubin, A. E.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1997, 36, 2637 https://doi.org/10.1002/anie.199726371
  17. Denis, J. N.; Greene, A. E.; Serra, A. A.; Luche, M. J. J. Org. Chem. 1986, 51, 46 https://doi.org/10.1021/jo00351a008
  18. Escalante, J.; Juaristi, E. Tetrahedron Lett. 1995, 36, 4397 https://doi.org/10.1016/0040-4039(95)00859-B
  19. Kobayashi, S.; Osobe, T.; Ohno, M. Tetrahedron Lett. 1984, 25, 5079 https://doi.org/10.1016/S0040-4039(01)91124-4
  20. Nishino, N.; Powers, J. C. Biochemistry 1979, 18, 4340 https://doi.org/10.1021/bi00587a012
  21. Nagai, M.; Kojima, F.; Naganawa, H.; Hamada, M.; Aoyagi, T.; Takeuchi, T. J. Antibiot. 1997, 50, 82 https://doi.org/10.7164/antibiotics.50.82
  22. Aoyagi, T.; Yoshida, S.; Nakamura, Y.; Shigihara, Y.; Hamada, M.; Takeuchi, T. J. Antibiot. 1990, 43, 143 https://doi.org/10.7164/antibiotics.43.143
  23. Kimura, T.; Shuto, D.; Kasai, S.; Liu, P.; Hidaka, K.; Hamada, T.; Hayashi, Y.; Hattori, C.; Asai, M.; Kitazume, S.; Saido, T. C.; Ishiura, S.; Kiso, Y. Bioorg. Med. Chem. Lett. 2004, 14, 1527 https://doi.org/10.1016/j.bmcl.2003.12.088
  24. Kimura, T.; Shuto, D.; Hamada, Y.; Igawa, N.; Kasai, S.; Liu, P.; Hidaka, K.; Hamada, T.; Hayashi, Y.; Hiso, Y. Bioorg. Med. Chem. Lett. 2005, 15, 211 https://doi.org/10.1016/j.bmcl.2004.09.090
  25. Kimura, T.; Hamada, Y.; Stochaj, M.; Ikari, H.; Nagamine, A.; Abdel-Rahman, H.; Igawa, N.; Hidaka, K.; Nguyen, J.-T.; Saito, K.; Hayashi, Y.; Kiso, Y. Bioorg. Med. Chem. Lett. 2006, 16, 2380 https://doi.org/10.1016/j.bmcl.2006.01.108
  26. Brynda, J.;Rezacova, P.;Fabry, M.;Horejsi, M.;Stouracova, R.;Sedlacek, J.;Soucek, M.;Hradilek, M.;Lepsik,M.;Konvalinka, J. J. Med. Chem. 2004, 47, 2030 https://doi.org/10.1021/jm031105q
  27. Shuto, D.;Kasai, S.; Kimura, T.; Liu, P.; Hidaka, K.; Hamada, T.;Shibakawa, S.; Hayashi, Y.; Hattori, C.; Szabo, B.; Ishiura, S.;Kiso, Y. Bioorg. Med. Chem. Lett. 2003, 13, 4273 https://doi.org/10.1016/j.bmcl.2003.09.053
  28. Nishizawa, R.; Saino, T.; Takita, T.; Suda, H.; Aoyagi, T.; Umezawa, H. J. Med. Chem. 1977, 20, 510 https://doi.org/10.1021/jm00214a010
  29. Herranz, R.; Castro-Pichel, J.; Garcia Lopez, T. Synthesis 1989, 703
  30. Rich, D. H.; Moon, B. J.; Boparai, A. S. J. Org. Chem. 1980, 45, 2288 https://doi.org/10.1021/jo01300a004
  31. Rich, D. H.; Sun, E. T.; Boparai, A. S. J. Org. Chem. 1978, 43, 3624 https://doi.org/10.1021/jo00412a053
  32. Rafiee, E.; Tangestaninejad, S.; Habibi, M. H.; Mirkhani, V. Bull. Korean Chem. Soc. 2005, 26, 1585 https://doi.org/10.1007/s11814-009-0278-4
  33. Sharpless, K. B.; Behrens, C. H.; Katsuki, T.; Lee, A. W. M.; Martin, V. S.; Takatani, M.; Viti, S. M.; Walker, F. J.; Woodard, S. S. Pure Appl. Chem. 1983, 55, 589 https://doi.org/10.1351/pac198855040589
  34. Kato, K.; Sino, T.; Nishizawa, R.; Takita, T.; Umezawa, H. J. Chem. Soc. Perkin Trans. 1 1980, 1618 https://doi.org/10.1039/p19800001618
  35. Lee, J. H.; Lee, B. W.; Jang, K. C.; Jeong, I.-Y.; Yang, M. S.; Lee, S. K.; Park, K. H. Synthesis 2003, 829
  36. Kim, J. H.; Long, M. J. C.; Seo, W. D.; Ryu, Y. B.; Yang, M. S.; Park, K. H. J. Org. Chem. 2005, 70, 4082 https://doi.org/10.1021/jo050079w
  37. Lubell, W. D.; Rapoport, H. J. Am. Chem. Soc. 1987, 109, 236 https://doi.org/10.1021/ja00235a035
  38. Gerspacher, M.; Rapoport, H. J. Org. Chem. 1991, 56, 3700 https://doi.org/10.1021/jo00011a047
  39. Park, K. H.; Yoon, Y. J.; Lee, S. G. Tetrahedron Lett. 1994, 35, 9737 https://doi.org/10.1016/0040-4039(94)88373-4
  40. Lee, J. H.; Kang, J. E.; Yang, M. S.; Kang, K. Y.; Park, K. H. Tetrahedron 2001, 57, 10071 https://doi.org/10.1016/S0040-4020(01)01070-5
  41. Jeong, I.-Y.; Lee, J. H.; Lee, B. W.; Kim, J. H.; Park, K. H. Bull. Korean Chem. Soc. 2003, 24, 617 https://doi.org/10.5012/bkcs.2003.24.5.617
  42. Kang, J. E.; Kim, J. H.; Lee, W. S.; Yang, M. S.; Park, K. H. Bull. Korean Chem. Soc. 1998, 19, 1369