References
- Beil, M., Micoulet, A., von Wichert, G., Paschke, S., Walther, P., Omary, M. B., Van Veldhoven, P. P., Gern, U., Wolff-Hieber, E., Eggermann, J., Waltenberger, J., Adler, G., Spatz, J. and Seufferlein, T. (2003) Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat. Cell Biol. 5, 803-811. https://doi.org/10.1038/ncb1037
- Blumberg, P. M. (1988) Protein kinase C as the receptor for the phorbol ester tumor promoters: sixth Rhoads memorial award lecture. Cancer Res. 48, 1-8.
- Bordeleau, F., Bessard, J., Sheng, Y. and Marceau, N. (2008) Keratin contribution to cellular mechanical stress response at focal adhesions as assayed by laser tweezers. Biochem. Cell Biol. 86, 352-359. https://doi.org/10.1139/O08-076
- Busch, T., Armacki, M., Eiseler, T., Joodi, G., Temme, C., Jansen, J., von Wichert, G., Omary, M. B., Spatz, J. and Seufferlein, T. (2012) Keratin 8 phosphorylation regulates keratin reorganization and migration of epithelial tumor cells. J. Cell Sci. 125, 2148-2159. https://doi.org/10.1242/jcs.080127
- Byun, H. J., Kang, K. J., Park, M. K., Lee, H. J., Kang, J. H., Lee, E. J., Kim, Y. R., Kim, H. J., Kim, Y. W., Jung, K. C., Kim, S. Y. and Lee, C. H. (2013) Ethacrynic acid inhibits sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization via transglutaminase-2 inhibition. Biomol. Ther. 21, 338-342. https://doi.org/10.4062/biomolther.2013.066
- Cadrin, M., McFarlane-Anderson, N., Aasheim, L. H., Kawahara, H., Franks, D. J., Marceau, N. and French, S. W. (1992) Differential phosphorylation of CK8 and CK18 by 12-O-tetradecanoyl-phorbol-13-acetate in primary cultures of mouse hepatocytes. Cell Signal. 4, 715-722. https://doi.org/10.1016/0898-6568(92)90052-A
- Cross, S. E., Jin, Y. S., Rao, J. and Gimzewski, J. K. (2007) Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780-783. https://doi.org/10.1038/nnano.2007.388
- Ichikawa, H., Nakamura, Y., Kashiwada, Y. and Aggarwal, B. B. (2007) Anticancer drugs designed by mother nature: ancient drugs but modern targets. Curr. Pharm. Des. 13, 3400-3416. https://doi.org/10.2174/138161207782360492
- Kasahara, K., Kartasova, T., Ren, X. Q., Ikuta, T., Chida, K. and Kuroki, T. (1993) Hyperphosphorylation of keratins by treatment with okadaic acid of BALB/MK-2 mouse keratinocytes. J. Biol. Chem. 268, 23531-23537.
- Ku, N. O. and Omary, M. B. (1997) Phosphorylation of human keratin 8 in vivo at conserved head domain serine 23 and at epidermal growth factor-stimulated tail domain serine 431. J. Biol. Chem. 272, 7556-7564. https://doi.org/10.1074/jbc.272.11.7556
- Nakajima, J., Nakae, D. and Yasukawa, K. (2013) Structure-dependent inhibitory effects of synthetic cannabinoids against 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and skin tumour promotion in mice. J. Pharm. Pharmacol. 65, 1223-1230. https://doi.org/10.1111/jphp.12082
- Omary, M. B., Ku, N. O., Liao, J. and Price, D. (1998) Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell. Biochem. 31, 105-140.
- Park, M. K., Lee, H. J., Shin, J., Noh, M., Kim, S. Y. and Lee, C. H. (2011) Novel participation of transglutaminase-2 through c-Jun N-terminal kinase activation in sphingosylphosphorylcholine-induced keratin reorganization of PANC-1 cells. Biochim. Biophys. Acta 1811, 1021-1029. https://doi.org/10.1016/j.bbalip.2011.07.007
- Park, M. K., Park, Y., Shim, J., Lee, H. J., Kim, S. and Lee, C. H. (2012) Novel involvement of leukotriene B(4) receptor 2 through ERK activation by PP2A down-regulation in leukotriene B(4)-induced keratin phosphorylation and reorganization of pancreatic cancer cells. Biochim. Biophys. Acta 1823, 2120-2129. https://doi.org/10.1016/j.bbamcr.2012.09.004
- Ridge, K. M., Linz, L., Flitney, F. W., Kuczmarski, E. R., Chou, Y. H., Omary, M. B., Sznajder, J. I. and Goldman, R. D. (2005) Keratin 8 phosphorylation by protein kinase C delta regulates shear stressmediated disassembly of keratin intermediate filaments in alveolar epithelial cells. J. Biol. Chem. 280, 30400-30405. https://doi.org/10.1074/jbc.M504239200
- Sivaramakrishnan, S., Schneider, J. L., Sitikov, A., Goldman, R. D. and Ridge, K. M. (2009) Shear stress induced reorganization of the keratin intermediate filament network requires phosphorylation by protein kinase C zeta. Mol. Biol. Cell 20, 2755-2765. https://doi.org/10.1091/mbc.E08-10-1028
- Steeg, P. S. (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895-904. https://doi.org/10.1038/nm1469
- Xu, X., Prough, R. A. and Samuelson, D. J. (2013) Differential 12-O-Tetradecanoylphorbol- 13-acetate-induced activation of rat mammary carcinoma susceptibility Fbxo10 variant promoters via a PKC-AP1 pathway. Mol. Carcinog. Sep 5. doi: 10.1002/mc.22081. [Epub ahead of print]
Cited by
- Phosphorylation and Reorganization of Keratin Networks: Implications for Carcinogenesis and Epithelial Mesenchymal Transition vol.23, pp.4, 2015, https://doi.org/10.4062/biomolther.2015.032
- Increased chemoresistance to paclitaxel in the MCF10AT series of human breast epithelial cancer cells vol.33, pp.4, 2015, https://doi.org/10.3892/or.2015.3775
- Epithelial membrane protein 2 regulates sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization: Changes of PP2A expression by interaction with alpha4 and caveolin-1 in lung cancer cells vol.1863, pp.6, 2016, https://doi.org/10.1016/j.bbamcr.2016.02.007
- Effects of cerulein on keratin 8 phosphorylation and perinuclear reorganization in pancreatic cancer cells: Involvement of downregulation of protein phosphatase 2A and alpha4 vol.31, pp.12, 2016, https://doi.org/10.1002/tox.22186
- Transglutaminase is a tumor cell and cancer stem cell survival factor vol.54, pp.10, 2015, https://doi.org/10.1002/mc.22375
- A long non-coding RNA inside the type 2 transglutaminase gene tightly correlates with the expression of its transcriptional variants vol.50, pp.3-4, 2018, https://doi.org/10.1007/s00726-017-2528-9
- Leukamenin E Induces K8/18 Phosphorylation and Blocks the Assembly of Keratin Filament Networks Through ERK Activation vol.21, pp.9, 2014, https://doi.org/10.3390/ijms21093164