• Title/Summary/Keyword: R-Curve

Search Result 1,706, Processing Time 0.025 seconds

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.

Effects of Low Air Temperature and Light Intensity on Yield and Quality of Tomato at the Early Growth Stage (정식 초기의 저온·저일조가 토마토 수량·품질에 미치는 영향)

  • Wi, Seung Hwan;Yeo, Kyung-Hwan;Choi, Hak Soon;Yu, Inho;Lee, Jin Hyong;Lee, Hee Ju
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.448-454
    • /
    • 2021
  • This study was conducted to the effect of low air temperature and light intensity conditions on yield and quality of tomato at the early stage of growth in Korea. Inplastic greenhouses, low temperature and low temperature with shade treatments were performed from 17 to 42 days after plant. Tomato growing degree days were decreased 5.5% due to cold treatment during the treatment period. Light intensity decreased 74.7% of growing degree days due to shade. After commencing treatments, the plant growth decreased by low temperature and low radiation except for height. Analysis of the yield showed that the first harvest date was the same, but the yield of the control was 3.3 times higher than low temperature with shade treatment. The cumulative yields at 87 days after transplanting were 1734, 1131, and 854 g per plant for control, low temperature, and low temperature with shade, respectively. The sugar and acidity of tomatoes did not differ between treatment and harvesting season. To investigate the photosynthetic characteristics according to the treatment, the carbon dioxide reaction curve was analyzed using the biochemical model of the photosynthetic rate. The results showed that the maximum photosynthetic rate, J (electric transportation rate), TPU (triose phosphate utilization), and Rd (dark respiration rate) did not show any difference with temperature, but were reduced by shading. Vcmax (maximum carboxylation rate) was decreased depending on the low temperature and the shade. Results indicated that low temperature and light intensity at the early growth stage can be inhibited the growth in the early stage but this phenomenon might be recovered afterward. The yield was reduced by low temperature and low intensity and there was no difference in quality.

The Optimization and Verification of an Analytical Method for Sodium Iron Chlorophyllin in Foods Using HPLC and LC/MS (식품 중 철클로로필린나트륨의 HPLC 및 LC/MS 최적 분석법과 타당성 검증)

  • Chong, Hee Sun;Park, Yeong Ju;Kim, Eun Gyeom;Park, Yea Lim;Kim, Jin Mi;Yamaguchi, Tokutaro;Lee, Chan;Suh, Hee-Jae
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.148-157
    • /
    • 2019
  • An optimized analytical method for sodium iron chloriphyllin in foods was established and verified by using high performance liquid chromatography with attached diode array detection. An Inertsil ODS-2 column and methanol-water (80:20 containing 1% acetate) as a mobile phase were employed. The limit of detection and quantitation of sodium iron chloriphyllin were 0.1 and 0.3 mg/kg, respectively, and the linearity of calibration curve was excellent ($R^2=0.9999$). The accuracy and precision were 93.9~104.95% and 2.0~7.7% in both inter-day and intra-day tests. Recoveries for candy and salad dressing were ranged between 93 and 104% (relative standard deviation, (RSD) 0.3~4.3%), and between 83 and 115% (RSD 1.2~2.0%), respectively. Liquid chromatography mass spectrometry was used to verify the main components of sodium iron chlorophyllin which were Fe-isochlorin e4 and Fe-chlorin e4.

Effect of Terephthalaldehyde to Facilitate Electron Transfer in Heme-mimic Catalyst and Its Use in Membraneless Hydrogen Peroxide Fuel Cell (테레프탈알데하이드의 전자전달 강화효과에 따른 헴 단백질 모방 촉매의 성능 향상 및 이를 이용한 비분리막형 과산화수소 연료전지)

  • Jeon, Sieun;An, Heeyeon;Chung, Yongjin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.588-593
    • /
    • 2022
  • Terephthalaldehyde (TPA) is introduced as a cross liker to enhance electron transfer of hemin-based cathodic catalyst consisting of polyethyleneimine (PEI), carbon nanotube (CNT) for hydrogen peroxide reduction reaction (HPRR). In the cyclic voltammetry (CV) test with 10 mM H2O2 in phosphate buffer solution (pH 7.4), the current density for HPRR of the suggested catalyst (CNT/PEI/hemin/PEI/TPA) shows 0.2813 mA cm-2 (at 0.2 V vs. Ag/AgCl), which is 2.43 and 1.87 times of non-cross-linked (CNT/PEI/hemin/PEI) and conventional cross liker (glutaraldehyde, GA) used catalyst (CNT/PEI/hemin/PEI/GA), respectively. In the case of onset potential for HPRR, that of CNT/PEI/hemin/PEI/TPA is observed at 0.544 V, while those of CNT/PEI/hemin/PEI and CNT/PEI/hemin/PEI/GA are 0.511 and 0.471 V, respectively. These results indicate that TPA plays a role in facilitating electron transfer between the electrodes and substrates due to the π-conjugated cross-linking bonds, whereas conventional GA cross-linker increases the overpotential by interrupting electron and mass transfer. Electrochemical impedance spectroscopy (EIS) results also display the same tendency. The charge transfer resistance (Rct) of CNT/PEI/hemin/PEI/TPA decreases about 6.2% from that of CNT/PEI/hemin/PEI, while CNT/PEI/hemin/PEI/GA shows the highest Rct. The polarization curve using each catalyst also supports the superiority of TPA cross liker. The maximum power density of CNT/PEI/hemin/PEI/TPA (36.34±1.41 μWcm-2) is significantly higher than those of CNT/PEI/hemin/PEI (27.87±0.95 μWcm-2) and CNT/PEI/hemin/PEI/GA (25.57±1.32 μWcm-2), demonstrating again that the cathode using TPA has the best performance in HPRR.

Modification and Validation of an Analytical Method for Dieckol in Ecklonia Stolonifera Extract (곰피추출물의 지표성분 Dieckol의 분석법 개선 및 검증)

  • Han, Xionggao;Choi, Sun-Il;Men, Xiao;Lee, Se-jeong;Oh, Geon;Jin, Heegu;Oh, Hyun-Ji;Kim, Eunjin;Kim, Jongwook;Lee, Boo-Yong;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.3
    • /
    • pp.143-148
    • /
    • 2022
  • This study was to investigate an analytical method for determining dieckol content in Ecklonia stolonifera extract. According to the guidelines of International Conference on Harmonization. Method validation was performed by measuring the specificity, linearity, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ) of dieckol using high-performance liquid chromatography-photodiode array. The results showed that the correlation coefficient of calibration curve (R2) for dieckol was 0.9997. The LOD and LOQ for dieckol were 0.18 and 0.56 ㎍/mL, respectively. The intra- and inter-day precision values of dieckol were approximately 1.58-4.39% and 1.37-4.64%, respectively. Moreover, intra- and inter-day accuracies of dieckol were approximately 96.91-102.33% and 98.41-105.71%, respectively. Thus, we successfully validated the analytical method for estimating dieckol content in E. stolonifera extract.

Validation of an Analytical Method for Deacetylasperulosidic acid, Total Sugar and Monosaccharide Analysis in Fermented Morinda citrifolia Polysaccharide Powder (발효노니 다당체 분말의 deacetylasperulosidic acid, 총당 및 단당류 분석법 검증)

  • Kwon, Heeyeon;Choi, Jisoo;Kim, Soojin;Kim, Eunmin;Uhm, Jihyun;Kim, Bokyung;Lee, Jaeyeon;Kim, Yongdeok
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.216-224
    • /
    • 2022
  • This study was aimed at validating the analysis methods for deacetylasperulosidic acid (DAA), total sugar, galacturonic acid, glucose, and galactose, which are the indicator components of fermented Morinda citrifolia polysaccharide extract (Vitalbos). We modified the previously reported methods for validating the analytical methods. The specificity, linearity, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ) were measured using phenol-sulfuric acid method and high-performance liquid chromatography (HPLC). The retention time and spectrum of the standard solution of Vitalbos coincided, confirming the specificity. The calibration curve correlation coefficient (R2), of five indicator components, ranged from 0.9995-0.9998, indicating excellent linearity of 0.99 or more. The intra-day and inter-day precision range of the assay was 0.14-3.01%, indicating a precision of less than 5%. The recovery rate was in the range of 95.13-105.59%, presenting excellent accuracy. The LOD ranged from 0.39 to 0.84 ㎍/mL and the LOQ ranged from 1.18 to 2.55 ㎍/mL. Therefore, the analytical method was validated for DAA, total sugar, galacturonic acid, glucose, and galactose, in Vitalbos. The indicator component content in Vitalbos was determined using a validated method. The contents of DAA, total sugar, galacturonic acid, glucose, and galactose were 2.31±0.06, 475.92±5.95, 72.83±1.05, 71.63±2.44, and 67.30±2.31 mg/g of dry weight, respectively. These results suggest that the developed analytical method is efficient and could contribute to the quality control of Vitalbos, as a healthy functional food material.

Estimation of Rice Canopy Height Using Terrestrial Laser Scanner (레이저 스캐너를 이용한 벼 군락 초장 추정)

  • Dongwon Kwon;Wan-Gyu Sang;Sungyul Chang;Woo-jin Im;Hyeok-jin Bak;Ji-hyeon Lee;Jung-Il Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.387-397
    • /
    • 2023
  • Plant height is a growth parameter that provides visible insights into the plant's growth status and has a high correlation with yield, so it is widely used in crop breeding and cultivation research. Investigation of the growth characteristics of crops such as plant height has generally been conducted directly by humans using a ruler, but with the recent development of sensing and image analysis technology, research is being attempted to digitally convert growth measurement technology to efficiently investigate crop growth. In this study, the canopy height of rice grown at various nitrogen fertilization levels was measured using a laser scanner capable of precise measurement over a wide range, and a comparative analysis was performed with the actual plant height. As a result of comparing the point cloud data collected with a laser scanner and the actual plant height, it was confirmed that the estimated plant height measured based on the average height of the top 1% points showed the highest correlation with the actual plant height (R2 = 0.93, RMSE = 2.73). Based on this, a linear regression equation was derived and used to convert the canopy height measured with a laser scanner to the actual plant height. The rice growth curve drawn by combining the actual and estimated plant height collected by various nitrogen fertilization conditions and growth period shows that the laser scanner-based canopy height measurement technology can be effectively utilized for assessing the plant height and growth of rice. In the future, 3D images derived from laser scanners are expected to be applicable to crop biomass estimation, plant shape analysis, etc., and can be used as a technology for digital conversion of conventional crop growth assessment methods.

Characterization of typical Aeromonas salmonicida isolated from Sea-Chum Salmon (Oncorhynchus keta) (해수에 순치된 첨연어(Oncorhynchus keta)에서 분리된 정형 에로모나스 살모니시다(Aeromonas salmonicida)에 대한 특성 분석)

  • Jongwon Lim;Sungjae Ko;Youngjun Park;Do-il Ahn;Suhee Hong
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.263-275
    • /
    • 2023
  • Chum salmon (Oncorhynchus keta) is a species which returns to Korea for spawning and was produced as seed production at the Fisheries Resources Agency located in Uljin-gun, Gyeongsangbuk-do to preserve the species. However, farmed chum salmon showed symptoms of bacterial infection. Therefore, in this study, bacteria were isolated to identify the causative agent from chum salmon in October 2021. The isolated bacteria were identified based on the sequences of 16S rDNA, rpoD (RNA polymerase sigma factor σ70), and vapA (A-layer) genes. Also, salinity-growth curve, biochemical characterization, antibiotic susceptibility test, and pathogenicity analysis were performed in four strains. As a result, four isolated strains were identified as Aeromonas salmonicida subsp. salmonicida. Additionally, the bacterial strains showed a decrease in growth as the salt concentration increased in the medium. All of the isolated strains exhibited γ-hemolysis, and the same biochemical properties. In the antimicrobial susceptibility test, all strains showed an inhibition zone of 40 to 44 mm for oxolinic acid, flumequine, and florfenicol. Pathogenic factors were assessed by RT-PCR at the mRNA level, and found that the four strains expresses the outer membrane ring of T3SS (ascV), inner membrane ring of T3SS (ascC), vapA, enterotoxin (act), and lipase (lip) genes which are well known to significantly contribute to the pathogenicity of A. salmonicida. The results of this study can be used as basic data to prevent A. salmonicida subsp. salmonicida occurring in sea-chum salmon in the future.

Evaluation of Post-Neoadjuvant Chemotherapy Pathologic Complete Response and Residual Tumor Size of Breast Cancer: Analysis on Accuracy of MRI and Affecting Factors (신보강화학요법 후 유방암의 병리학적 완전 관해 예측 및 잔류 암 평가: 유방자기공명영상의 정확도 및 영향인자 분석)

  • Hyun Soo Ahn;Yeong Yi An;Ye Won Jeon;Young Jin Suh;Hyun-Joo Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.3
    • /
    • pp.654-669
    • /
    • 2021
  • Purpose To evaluate the accuracy of MRI in predicting the pathological complete response (pCR) and the residual tumor size of breast cancer after neoadjucant chemotherapy (NAC), and to determine the factors affecting the accuarcy. Materials and Methods Eighty-eight breast cancer patients who underwent surgery after NAC at our center between 2010 and 2017 were included in this study. pCR was defined as the absence of invasive cancer on pathological evaluation. The maximum diameter of the residual tumor on post-NAC MRI was compared with the tumor size of the surgical specimen measured pathologically. Statistical analysis was performed to elucidate the factors affecting pCR and the residual tumor size-discrepancy between the MRI and the pathological measurements. Results The pCR rate was 10%. The diagnostic accuracy of MRI and the area under the curve for predicting pCR were 90.91% and 0.8017, respectively. The residual tumor sizes obtained using MRI and pathological measurements showed a strong correlation (r = 0.9, p < 0.001), especially in patients with a single mass lesion (p = 0.047). The size discrepancy between MRI and the pathological measurements was significantly greater in patients with the luminal type (p = 0.023) and multifocal tumors/non-mass enhancement on pre-NAC MRI (p = 0.047). Conclusion MRI is an accurate tool for evaluating pCR and residual tumor size in breast cancer patients who receive NAC. Tumor subtype and initial MRI features affect the accuracy of MRI.

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF