DOI QR코드

DOI QR Code

Effect of Terephthalaldehyde to Facilitate Electron Transfer in Heme-mimic Catalyst and Its Use in Membraneless Hydrogen Peroxide Fuel Cell

테레프탈알데하이드의 전자전달 강화효과에 따른 헴 단백질 모방 촉매의 성능 향상 및 이를 이용한 비분리막형 과산화수소 연료전지

  • Jeon, Sieun (Department of IT.Energy Convergence (BK21 FOUR), Korea National University of Transportation) ;
  • An, Heeyeon (Department of IT.Energy Convergence (BK21 FOUR), Korea National University of Transportation) ;
  • Chung, Yongjin (Department of IT.Energy Convergence (BK21 FOUR), Korea National University of Transportation)
  • 전시은 (한국교통대학교 교통.에너지융합전공) ;
  • 안희연 (한국교통대학교 교통.에너지융합전공) ;
  • 정용진 (한국교통대학교 교통.에너지융합전공)
  • Received : 2022.06.24
  • Accepted : 2022.07.05
  • Published : 2022.11.01

Abstract

Terephthalaldehyde (TPA) is introduced as a cross liker to enhance electron transfer of hemin-based cathodic catalyst consisting of polyethyleneimine (PEI), carbon nanotube (CNT) for hydrogen peroxide reduction reaction (HPRR). In the cyclic voltammetry (CV) test with 10 mM H2O2 in phosphate buffer solution (pH 7.4), the current density for HPRR of the suggested catalyst (CNT/PEI/hemin/PEI/TPA) shows 0.2813 mA cm-2 (at 0.2 V vs. Ag/AgCl), which is 2.43 and 1.87 times of non-cross-linked (CNT/PEI/hemin/PEI) and conventional cross liker (glutaraldehyde, GA) used catalyst (CNT/PEI/hemin/PEI/GA), respectively. In the case of onset potential for HPRR, that of CNT/PEI/hemin/PEI/TPA is observed at 0.544 V, while those of CNT/PEI/hemin/PEI and CNT/PEI/hemin/PEI/GA are 0.511 and 0.471 V, respectively. These results indicate that TPA plays a role in facilitating electron transfer between the electrodes and substrates due to the π-conjugated cross-linking bonds, whereas conventional GA cross-linker increases the overpotential by interrupting electron and mass transfer. Electrochemical impedance spectroscopy (EIS) results also display the same tendency. The charge transfer resistance (Rct) of CNT/PEI/hemin/PEI/TPA decreases about 6.2% from that of CNT/PEI/hemin/PEI, while CNT/PEI/hemin/PEI/GA shows the highest Rct. The polarization curve using each catalyst also supports the superiority of TPA cross liker. The maximum power density of CNT/PEI/hemin/PEI/TPA (36.34±1.41 μWcm-2) is significantly higher than those of CNT/PEI/hemin/PEI (27.87±0.95 μWcm-2) and CNT/PEI/hemin/PEI/GA (25.57±1.32 μWcm-2), demonstrating again that the cathode using TPA has the best performance in HPRR.

본 논문에서는 hemin, 폴리에틸렌이민(PEI) 및 탄소나노튜브(CNT)를 이용하여 제조 CNT/PEI/hemin/PEI 복합재에 가교제인 테레프탈알데하이드(TPA)를 첨가하여 전자전달이 개선된 과산화수소 환원 반응(HPRR) 촉매를 합성하였다. 합성된 촉매(CNT/PEI/hemin/PEI/TPA)를 과산화수소 10 mM 농도에서 HPRR 반응성을 확인한 결과, 0.2 V (vs. Ag/AgCl)에서 0.2813 mA cm-2의 전류 밀도로 나타났으며, 이는 가교하지 않은 촉매(CNT/PEI/hemin/PEI)와 범용 가교제인 글루타르알데하이드(GA)에 의해 가교된 촉매(CNT/PEI/hemin/PEI/GA)에 비해 각각 2.43 및 1.87배 증가하였다. CNT/PEI/hemin/PEI/TPA의 HPRR 개시전위는 0.544 V로서 CNT/PEI/hemin/PEI와 CNT/PEI/hemin/PEI/GA의 0.511 및 0.471 V에 비하여 원활한 전자전달에 의해 개선되었음을 확인할 수 있었다. 이는 전기화학 임피던스 분광법(EIS)을 이용한 분석 결과에서도 확인되었는데, CNT/PEI/hemin/PEI/GA의 경우, 전자전달을 방해하는 가교제의 도입에 따라 CNT/PEI/hemin/PEI에 비하여 높은 전자전달저항을 나타낸 반면, CNT/PEI/hemin/PEI/TPA는 6.2% 감소하여, 가장 낮은 전자전달저항을 나타냈다. 막이 없는 흐름형 과산화수소 연료전지를 이용한 평가에서도, CNT/PEI/hemin/PEI/TPA를 환원극으로 활용한 전지의 최대 출력 밀도가 36.34±1.41 μWcm-2로, CNT/PEI/hemin/PEI (27.87±0.95 μWcm-2)와 CNT/PEI/hemin/PEI/GA(25.57±1.32 μWcm-2) 보다 높게 측정되어, TPA는 전자전달을 개선 성능을 확인할 수 있었다.

Keywords

Acknowledgement

본 논문은 고재욱 교수님의 정년을 기념하여 투고되었으며, 대한민국 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2020R1C1C1010386).

References

  1. Fawzy, S., Osman, A.I., Doran, J. and Rooney, D.W., "StrateGies for Mitigation of Climate Change: A Review," Environ. Chem. Lett., 18(6), 2069-2094(2020). https://doi.org/10.1007/s10311-020-01059-w
  2. Chen, M. T., Duan, J. J., Feng, J. J., Mei, L. P., Jiao, Y., Zhang, L. and Wang, A. J., "Iron, Rhodium-codoped Ni2P Nanosheets Arrays Supported on Nickel Foam as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting," J. Colloid Interface Sci., 605, 888-896(2022). https://doi.org/10.1016/j.jcis.2021.07.101
  3. Abe, J. O., Popoola, A. P. I., Ajenifuja, E. and Popoola, O. M., "Hydrogen Energy, Economy and Storage: Review and Recommendation," Int. J. Hydrog. Energy., 44(29), 15072-15086(2019). https://doi.org/10.1016/j.ijhydene.2019.04.068
  4. Fukuzumi, S., Yamada, Y. and Karlin, K. D., "Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell," Electrochim. Acta., 82, 493-511(2012). https://doi.org/10.1016/j.electacta.2012.03.132
  5. Miglbauer, E., Wojcik, P. J. and Glowacki, E. D., "Single-compartment hydrogen peroxide fuel cells with poly(3,4-ethylenedioxythiophene) cathodes," Chem. Commun., 54(84), 11873-11876(2018). https://doi.org/10.1039/c8cc06802j
  6. Xue, Y., Wang, Y., Pan, Z. and Sayama, K., "Electrochemical and Photoelectrochemical Water Oxidation for Hydrogen Peroxide Production," Angew. Chem. Int. Ed., 60(19), 10469-10480(2021). https://doi.org/10.1002/anie.202011215
  7. Liu, J., Zou, Y., Jin, B., Zhang, K. and Park, J. H., "Hydrogen Peroxide Production from Solar Water Oxidation," ACS Energy Lett., 4(12), 3018-3027(2019). https://doi.org/10.1021/acsenergylett.9b02199
  8. Wu, J., Mehmood, A., Zhang, G., Wu, S., Ali, G. and Kucernak, A., "Highly selective O2 Reduction to H2O2 Catalyzed by Cobalt Nanoparticles Supported on Nitrogen-doped Carbon in Alkaline Solution," ACS Catal., 11(9), 5035-5046(2021). https://doi.org/10.1021/acscatal.0c05701
  9. Ji, J., Chung, Y. and Kwon, Y., "The effect of a vitamin B12 based catalyst on hydrogen peroxide oxidation reactions and the performance evaluation of a membraneless hydrogen peroxide fuel cell under physiological pH conditions," J. Mater. Chem. C., 8(8), 2749-2755(2020). https://doi.org/10.1039/c9tc06345e
  10. An, H., Jeon, H., Ji, J., Kwon, Y. and Chung, Y., "Amine Axial Ligand-coordinated Cobalt Phthalocyanine-based Catalyst for Flow-type Membraneless Hydrogen Peroxide Fuel Cell or Enzymatic Biofuel Cell," J. Energy Chem., 58, 463-471(2021). https://doi.org/10.1016/j.jechem.2020.10.042
  11. Jeon, S., An, H., Ji, J., Kwon, Y. and Chung, Y., "High Temperature-induced Myoglobin-mimic Catalytic Structure Having High Axial Ligand Content for One-compartment Hydrogen Peroxide Fuel Cells," Int. J. Energy Res., 46(4), 4142-4155(2022). https://doi.org/10.1002/er.7416
  12. Jeon, S., An, H. and Chung, Y., "High Performance of the Flowtype One-compartment Hydrogen Peroxide Fuel Cell using Buckypaper and Narrow Fuel Pathway under Physiological Conditions," Sustain. Energy Fuels., 6(3), 841-850(2022). https://doi.org/10.1039/D1SE01784E
  13. Reuillard, B., Gentil, S., Carriere, M., Le Goff, A. and Cosnier, S., "Biomimetic Versus Enzymatic High-potential ElectrocataLytic Reduction of Hydrogen Peroxide on a Functionalized Carbon Nanotube Electrode," Chem. Sci., 6(9), 5139-5143(2015). https://doi.org/10.1039/C5SC01473E
  14. Wang, G. X., Zhou, Y., Wang, M., Bao, W. J., Wang, K. and Xia, X. H., "Structure Orientation of Hemin Self-assembly Layer Determining the Direct Electron Transfer Reaction," ChemComm., 51(4), 689-692(2015).
  15. Chung, Y., Hyun, K. H. and Kwon, Y., "Fabrication of a Biofuel Cell Improved by the π-Conjugated Electron Pathway Effect Induced from a New Enzyme Catalyst Employing Terephthalaldehyde," Nanoscale., 8(2), 1161-1168(2016). https://doi.org/10.1039/C5NR06703K
  16. Hyun, K. H., Han, S. W., Koh, W. G. and Kwon, Y., "Fabrication of Biofuel Cell Containing Enzyme Catalyst Immobilized by Layerby-layer Method," J. Power Sources., 286, 197-203(2015). https://doi.org/10.1016/j.jpowsour.2015.03.136
  17. Chung, Y., Christwardana, M., Tannia, D. C., Kim, K. J. and Kwon, Y., "Biocatalyst Including Porous Enzyme Cluster Composite Immobilized by Two-step Crosslinking and Its Utilization as Enzymatic Biofuel Cell," J. Power Sources., 360, 172-179(2017). https://doi.org/10.1016/j.jpowsour.2017.06.012